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We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU(N) super Yang-
Mills theory. The model is well defined for finite N and it is found that the large N limit obtained by keeping g2 N
fixed gives rise to well defined operators which represent string amplitudes. The space-time structure which arises
dynamically from the eigenvalues of the bosonic matrices is discussed, as well as the effect of supersymmetry on
the dynamical properties of the model. Eguchi-Kawai equivalence of this model to ordinary gauge theory does
hold within a finite range of scale. We report on new simulations of the bosonic model for N up to 768 that
confirm this property, which comes as a surprise since no quenching or twist is introduced.

1. Introduction

Recent excitement in string theory stems from
the fact that known string theories are thought to
be perturbative expansions of an 11 dimensional
theory called M-theory. The former are believed
to be related by dualities and once we construct a
non—perturbative definition of one of them, then
we can also describe the vacua of any of the other
theories. Two models, the IKKT [[f] and BFSS
models [P], have been proposed as possible defi-
nitions of M-theory. Both models are thought to
be closely related [B]. For analytic work in this
context, see Ref. [ﬁ The IKKT model (or IIB
matrix model) [ﬂ] is a candidate for a construc-
tive definition of non—perturbative type IIB string
theory. If the model possesses a unique vacuum
this should describe the space-time in which we
live. Space-time arises dynamically in this model
and one can in principle predict its dimensional-
ity and low energy geometry. It has even been
argued that the gauge group and matter content
of our world can arise from the solution of this
model [f.

The IKKT model is a reduction of the 10d
SU(N) super Yang—Mills theory to a point, i.e.
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we restrict the path integral to be only over con-
stant field configurations. The model that we in-
vestigate in this talk is a 4d counterpart of the
IKKT model. Although it is much simpler than
the original model we hope to capture the essen-
tial dynamical features of the 10d model through
full scale numerical simulations which will yield
information about non—perturbative properties in
d = 4. Simulations in four dimensions are pos-
sible because the model does not suffer from
the sign problem, unlike its higher dimensional
cousins. Several important issues can be studied
in depth like the well definiteness of the model
at finite N, the large N limit, the space—time
structure and the role of supersymmetry. We can
also address the important dynamical issue of the
equivalence of the matrix model to the original
large—N gauge theory in the sense of Eguchi and
Kawai [ﬂ] We report on large scale simulations
of the supersymmetric and the bosonic model —
obtained by omitting the fermions in the action
[d]. By using a carefully constructed hybrid-R al-
gorithm [f] the computational effort in the SUSY
case increases only as N° and we are thus able to
simulate systems with size up to N = 48. The
bosonic model is simulated as in Ref. [E] up to
N = 768. The results for such large N have not
been published yet.
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2. The model

The IIB matrix model is given by

Z = /dA e*Sb/dzzd@b e=S1
Sy — —;?T‘r[AH,A,,]Q
1 _
Sy = —g—QTY(%FZg[Au,wﬁ]) (1)

where Ay, Yo, o (= 1...d, a = 1...2%_1)
are complex, traceless N x N matrices. In our
case, d = 4, the A, (only) are Hermitian and we
use T' = 10, Ty = 1.

The model has SO(d) rotational symmetry,
which is the euclidean version of the Lorentz in-
variance of the original model before reduction.
The SU(N) gauge invariance of the non-reduced
model becomes

A, — VAV
Yo — VY VI, VeSUN)
/‘La - V’JJQVT' (2)

The N = 1 supersymmetry of the non-reduced
model takes the form

sWA, = gl
7
dMy = EF“”[AH,AV]Q (3)

whereas after reduction the model acquires a sec-
ond supersymmetry

§24, = 0
6Py = e, (4)

The supercharges can be combined to Ql =
QW + Q@ and Qy = i(Q™W — Q@) which obey

the commutation relation
[51(21', 52@;‘] = -2l eap, 035, (5)

where p,, is the generator of the transformation
8'A,, = ¢, 1n. The latter is a symmetry of the ac-
tion which also appears after reduction. Eq. (E)
suggests that the eigenvalues of the bosonic ma-
trices A, can be interpreted as space-time points.
In this context, p, is the space-time translation
operator.

By adopting the above interpretation of the
model there are several reasons to believe that
the IKKT model (d = 10) is related to type I1IB
superstrings. First, by using the semiclassical
correspondence [[[] one obtains the action of the
Green-Schwarz type IIB superstring in the so-
called Schild gauge [@] Second, classical solu-
tions corresponding to D-strings are constructed
in Ref. [[l]. An arbitrary number of D-strings
and anti D-strings can be described as blocks
of matrices which interact via the off diagonal
blocks which can change their number and size.
Thus the model can be interpreted to contain
a second quantized theory of D-strings. Third
the authors of Ref. [[L1]] have obtained the string
field theory supercharges and Hamiltonian of the
type IIB string in the light cone gauge from the
Schwinger—Dyson equations (which describe join-
ing and splitting of fundamental strings) that the
Wilson loops obey by using only the N' = 2 su-
persymmetry and scaling arguments. The low en-
ergy physics that one obtains from the model re-
mains a mystery. The authors in Ref. [ff] have
proposed that the space—time metric is encoded
in the density correlations of the eigenvalues and
that diffeomorphism invariance stems from the in-
variance of the model under permutations of the
eigenvalues. They also suggest that the gauge
group is obtained from the clustering of eigenval-
ues in clusters of size n. Then the low energy the-
ory acquires SU(n) local space-time gauge sym-
metry.

The first question about our 4d model is
whether it is well-defined as it stands. Since the
integration domain of dA is non-compact, diver-
gences are conceivable. However, our results [ﬂ]
confirm the original results of Ref. [[J] for SUSY
— and they agree with very recent analytic re-
sults for the bosonic case [[[J] — that this model
is well-defined for large enough N; there is no
need to impose an IR cutoff. This implies that
the only parameter g is simply a scale parameter
that the theory determines dynamically. It can be
absorbed by introducing dimensionless quantities

Xu=Au/g"% 5 W =1pa/g®*. (6)



3. Numerical Simulations

For our simulation we start by integrating out
the fermionic variables which can be done explic-
itly [[{l. The result is given by det M, M being
a2(N? —1) x 2(N? — 1) complex matrix which
depends on A,. Hence the system we want to
simulate can be written in terms of bosonic vari-
ables as

Z = /dA e v det M . (7)

A crucial point for the present work is that the de-
terminant det M is actually real positive. This
is shown explicitly in Ref. [ﬂ] Due to this prop-
erty, we can introduce a 2(N? — 1) x 2(N? — 1)
Hermitian positive matrix D = MM, so that
det M = v/det D, and the effective action of the
system takes the form

1
Set = Sy — 5 Indet D . (8)

We apply the Hybrid R algorithm [§] to simu-
late this system. In the framework of this algo-
rithm, each update of a configuration is made by
solving a Hamiltonian equation for a fixed “time”
7. The algorithm is plagued by a systematic er-
ror due to the discretization of 7 that we used
to solve the equation numerically. Special care
is taken so that the systematic error is of order
A72, up to logarithmic corrections [ff]. We per-
formed simulations at three different values of the
time step A7. Except in Fig. 2, we find that
the results do not depend much on A7 (below
a certain threshold), so we just present the re-
sults for the value A7 = 0.002, which appears
to be sufficiently small. Extra care is taken so
that the computational effort increases only as
N? (in the bosonic case the corresponding effort
increases only as N3). Therefore for the super-
symmetric case we were able to obtain 3060, 1508,
1296, 436 configurations for N = 16, 24, 32, 48 re-
spectively. For the bosonic case, we used 1000
configurations for each N. The N < 32 simula-
tions were performed on a linux farm at NBI and
the N = 48 on the Fujitsu VPP500 at High En-
ergy Accelerator Research Organization (KEK),
the Fujitsu VPP700E at The Institute of Phys-
ical and Chemical Research (RIKEN), and the

NEC SX4 at Research Center for Nuclear Physics
(RCNP) of Osaka University supercomputers.

4. The space structure

In the IIB matrix model, the space coordinates
arise dynamically from the eigenvalues of the ma-
trices A, [[l. T general the latter cannot be di-
agonalized simultaneously, which implies that we
deal with a non-classical space. We measure its
uncertainty by

1 max
A% = <[ T(42) = B25pon D {UAUD]
and the “maximizing” matrix U is also used for
introducing the coordinates of N points,

i = (Unaz AU (=1...N).  (9)

max)

What we are really interested in is their pairwise
separation r(z;, x;) = |x; — x;|, and we show the
distribution p(r) in Fig. 1. We observe p ~ 0 at
short distances (r/,/g <1.5), hence a UV cutoff is
generated dynamically. We also see that increas-
ing N favors larger values of r. To quantify this
effect we measure the “extent of space”

Rnew :/ ’f‘p(’f‘) dr . (10)
0

Fig. 2 shows Ry and A as functions of N (at

g =1). Rpew is finite in contrast to the quantity

R = \/ \/ L% dr r2 p(r) which di-
verges logarlthmlcally as AT — 0. Thls is consis-
tent with the prediction by Ref. [1Z], p(r) ~ r—3
for large r. The inclusion of fermions enhances
Rpew and suppresses A, keeping their product
approximately constant and ~ gN'/2. We will
see that the latter product remains finite in the
large N scaling limit. It is a kind of uncertainty
principle for space-time fluctuations. The lines in
Fig. 2 show that both quantities follow the same
power law, Rpew, A oc N4 in SUSY and in the
bosonic case. In particular in the bosonic case
Rpew = 1.56(1)g"2NV4 A = 0.907(3)g'/2N1/4
so that AY2 ~ 0.58R,e. In the SUSY case
Rnew = 3.30(1)g"2N'Y4, A = 0.730(3)g" /2N /4
so that AY2 & 0.22R, . In SUSY this behavior
is consistent with the branched polymer picture:
there one would relate the number of points as
N ~ (Rpew/€)% , where { is some minimal bond,



which corresponds to the above UV cutoff. The
Hausdorff dimension dg = 4 then reveals consis-
tency with our result. In the bosonic case the
(same) exponent has a qualitatively different ex-
planation. It originates from a logarithmic at-
tractive potential between the eigenvalues of the

matrices found in the one loop approximation of
the model [].
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Figure 1. The distribution of distances between
space-points in the SUSY case at various N.
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Figure 2. The “extent of space” Rpew and the
space uncertainty A as functions of N at g = 1.

5. Polyakov and Wilson loops

We define the Polyakov loop P and the Wilson
loop W — which is conjectured to correspond to
the string creation operator — as

1 ,

Pp) = Tr(em), (11)
1 , . , .

W(p) = N’I‘r(elpAlewAze_”)Ale_wAz). (12)

Of course the choice of the components of A, is
irrelevant, and the parameter p € IR can be con-
sidered as a “momentum”.

Now ¢(NN) has to be tuned so that (P), (W)
remain finite as N — oo. This is achieved by

gx1/VN, (13)

which leads to a beautiful large N scaling; Fig.
3 shows the invariance of (P) for N = 16...48
in SUSY. Also the bosonic case scales accurately
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Figure 3. The Polyakov function in the SUSY
case for various values of N and g>N = const.

The historic 2d Eguchi-Kawai model [f] had a
(Zn)? symmetry, which implied (P(p # 0)) = 0,
a property which was crucial for the proof of the
Eguchi-Kawai equivalence to gauge theory. As we
see, this property is not fulfilled here, but (P(p))
falls off rapidly, towards a regime where the as-
sumption of this proof holds approximately.

We proceed to a more explicit test of Eguchi-
Kawai equivalence by checking the area law for
(W(p)). Fig. 4 shows that the area law seems to
hold in a finite range of scale for the model with
supersymmetry. Remarkably, the behavior is very
similar [ﬂ] in the bosonic caseﬁ. There we fur-
ther investigated the behavior at much larger N
[@], and we observed that the power law regime
does neither shrink to zero — as it was generally
expected — nor extend to infinity — a scenario
which seems possible from Fig. 4. At least in the
bosonic case its range remains finite at large N
as can be seen in Fig. 5.

2Recently the area law behavior was also observed in the
10d bosonic case [[L].
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Figure 4. The Wilson loop in the SUSY case for
various values of N and g? N = const.
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Figure 5. The Wilson loop in the bosonic case for
various values of N and >N = const.

6. Multipoint functions

We now consider connected multipoint func-
tions (0103 ... Op)eon, O; being a Polyakov or a
Wilson loop. We wonder if it is possible to renor-
malize all of those multipoint functions simply by

ren)

inserting (91( = Z(0;, so that a single factor Z

renders all functions <O§T€")O§T€") .. (97(;6")%0"
(simultaneously) finite at large N.

It turns out that such a universal renormaliza-
tion factor seems to exist in SUSY. We have to
set again g 1/\/N7 and then Z «< N provides
large N scaling, as we observed for a set of 2, 3
and 4-point functions. Two examples are shown
in Fig. 6. Our observation can be summarized by
the SUSY rule

(©)=0(1), {(01...0,)=0(N"™) (n>2).

This implies that large N factorization holds,

(01...0,) = (01)...{0,) + O(N72), as in
gauge theory, although coupling expansions are
not applicable here.
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Figure 6. A Polyakov 2-point function
(GgP) = ([ImP(k)]?)) and a Wilson S$-point
function (Géw) = {([ImW(k)]?ReW (k)) —
([ImW (k)]?) (ReW (k))) (both connected), with
g>N = const. and renormalization factor Z o« N,
which leads to large N scaling in the SUSY case.

For the bosonic case, a 1/d expansion [J] sug-
gests large IV factorization to hold as well, but it
also predicts (O;...0,) = O(N=2»=1) (n >
2). This is confirmed numerically [f]: in partic-
ular the 3-point functions now require Z3 oc N*.
Therefore no universal renormalization factor Z
exists in the bosonic case, which is an important
qualitative difference from the SUSY case.

7. Conclusions

We reported results from numerical simulations
of the 4d IIB matrix model, both, SUSY and
bosonic. In the SUSY case we varied N up to
48, which turned out to be sufficient to study the
large N dynamics.

We confirmed that the model is well-defined as
it stands, hence g is a pure scale parameter. The
space-time coordinates arise from eigenvalues of
the bosonic matrices A,. The extent of space-
time follows a power law in N with power of 1/4.
In SUSY this agrees with the branched polymer
picture. Fermions leave the power unchanged but
reduce the space—time uncertainty — though it



remains finite at large V. Space—time is quantum
with the uncertainty in determining space—time
points to scale together with the extent of space—
time, surviving thus the large N limit.

The large N scaling of Polyakov and Wilson
loops and their correlators requires g o< 1/ VN
in SUSY and in the bosonic case, but the wave
function renormalization is qualitatively different:
only in SUSY a universal renormalization exists.
Using a rough argument presented in Ref. [ﬂ] this
suggests that supersymmetry renders the world
sheet smoother than in the bosonic case. Indeed
such a phenomenon has been observed in the dy-
namical triangulation approach [@]

The area law for Wilson loops holds in a finite
range of scale for the SUSY and the bosonic case.
The latter comes as a surprise, and we checked
up to N = 768 that this range remains indeed
finite. Hence Eguchi-Kawai equivalence to ordi-
nary gauge theory @, even without quenching or
twist, may hold in some regime.
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