Complex Action Problem Silver-Blaze Phenomenon in the relativistic Bose gas

Stratos Kovalkov Papadoudis

National Technical University of Athens

No.

National Center of Scientific Research "Demokritos"

October 2014

Stratos Kovalkov Papadoudis

Outline

Complex Action Problem

- Motivation
- The Problem
- Solutions (so far)

Stochastic quantization

- Langevin equation
- Fokker-Planck equation and distribution
- Complex Langevin dynamics

3 Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far

Outline

- Complex Action Problem
 - Motivation
 - The Problem
 - Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics
- 3 Silver-Blaze phenomenon
 - Discrete Langevin dynamics
 - Relativistic Bose gas and simulations on a lattice
 - Summary

Motivation The Problem Solutions (so far

QCD phase diagram LARRY MCLERRAN, arXiv:0906.2651v1 [hep-ph]

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so fai

Silver-Blaze phenomenon

Christof Cattringer, Thomas Kloiber, arXiv:1206.2954v2 [hep-lat]

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

General Applications Stochastic numerical calculations of integrals

• calculate expectation value integrals

$$\langle f\rangle_0 = \frac{\displaystyle\int_X f(x)\varrho(x)dx}{\displaystyle\int_X \varrho(x)dx}$$

by sampling configuration space via Monte Carlo

- improve calculation time by following markovian chains
- maximize calculation efficiency by sampling integration space with appropriate probability
- ρ while natural is *not* always the best! (overlap problem

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

General Applications Stochastic numerical calculations of integrals

• calculate expectation value integrals

$$\langle f\rangle_0 = \frac{\displaystyle\int_X f(x)\varrho(x)dx}{\displaystyle\int_X \varrho(x)dx}$$

by sampling configuration space via Monte Carlo

- improve calculation time by following markovian chains
- maximize calculation efficiency by sampling integration space with appropriate probability
- ρ while natural is *not* always the best! (overlap problem

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

General Applications Stochastic numerical calculations of integrals

• calculate expectation value integrals

$$\langle f \rangle_0 = \frac{\int_X f(x)\varrho(x)dx}{\int_X \varrho(x)dx}$$

by sampling configuration space via Monte Carlo

- improve calculation time by following markovian chains
- maximize calculation efficiency by sampling integration space with appropriate probability
- ρ while natural is *not* always the best! (overlap problem

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

General Applications Stochastic numerical calculations of integrals

• calculate expectation value integrals

$$\langle f\rangle_0 = \frac{\displaystyle\int_X f(x)\varrho(x)dx}{\displaystyle\int_X \varrho(x)dx}$$

by sampling configuration space via Monte Carlo

- improve calculation time by following markovian chains
- maximize calculation efficiency by sampling integration space with appropriate probability
- ρ while natural is *not* always the best! (overlap problem)

Motivation The Problem Solutions (so far)

Outline

- Motivation
- The Problem
- Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics
- 3 Silver-Blaze phenomenon
 - Discrete Langevin dynamics
 - Relativistic Bose gas and simulations on a lattice
 - Summary

Motivation The Problem Solutions (so far)

Complex weights

• expectation values now include a sign or phase!

$$\varrho \longrightarrow \varrho e^{\imath \vartheta}$$

• implies signed or complex probability which makes no sense in either case

$$\langle f \rangle = \frac{\int_X f(x)\varrho(x)e^{i\vartheta(x)}dx}{\int_X \varrho(x)e^{i\vartheta(x)}dx}$$

• makes weight-sampling impossible

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Complex weights

• expectation values now include a sign or phase!

$$\varrho \longrightarrow \varrho e^{i\vartheta}$$

• implies signed or complex probability which makes no sense in either case

$$\langle f \rangle = \frac{\int_X f(x)\varrho(x)e^{i\vartheta(x)}dx}{\int_X \varrho(x)e^{i\vartheta(x)}dx}$$

• makes weight-sampling impossible

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Complex weights

• expectation values now include a sign or phase!

$$\varrho \longrightarrow \varrho e^{i\vartheta}$$

• implies signed or complex probability which makes no sense in either case

$$\langle f \rangle = \frac{\int_X f(x)\varrho(x)e^{i\vartheta(x)}dx}{\int_X \varrho(x)e^{i\vartheta(x)}dx}$$

• makes weight-sampling impossible

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Re-weighting

Partial solution to the sign problem

• partial solution comes with re-weighting

$$\langle f \rangle = \frac{\frac{\displaystyle \int_{X} f(x) \varrho(x) e^{i\vartheta(x)} dx}{\displaystyle \int_{X} \varrho(x) dx}}{\displaystyle \frac{\displaystyle \int_{X} \varrho(x) e^{i\vartheta(x)} dx}{\displaystyle \int_{X} \varrho(x) dx}} = \frac{\langle f e^{i\vartheta} \rangle_{0}}{\langle e^{i\vartheta} \rangle_{0}}$$

• using phase-quenched weights probability makes sense again

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Re-weighting

Partial solution to the sign problem

• partial solution comes with re-weighting

$$\langle f \rangle = \frac{\frac{\displaystyle \int_{X} f(x) \varrho(x) e^{i\vartheta(x)} dx}{\displaystyle \int_{X} \varrho(x) dx}}{\displaystyle \frac{\displaystyle \int_{X} \varrho(x) dx}{\displaystyle \int_{X} \varrho(x) e^{i\vartheta(x)} dx}} = \frac{\langle f e^{i\vartheta} \rangle_{0}}{\langle e^{i\vartheta} \rangle_{0}}$$

• using phase-quenched weights probability makes sense again

Motivation The Problem Solutions (so far)

Overlap problem

Important integration domain

The subset of X that contributes the most to the integral $\langle f \rangle$. Grows with sample size.

The "important" integration domains of

$$\int_X f(x) \varrho(x) dx$$
 and $\int_X \varrho(x) dx$

do not generally coincide, creating a "conflict" in the important integration domain of $\langle f \rangle$.

- This is a general problem found in any weighting ϱ
- Re-weighting suffers from it too, though not as seriously as

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Overlap problem

Important integration domain

The subset of X that contributes the most to the integral $\langle f \rangle$. Grows with sample size.

The "important" integration domains of

$$\int_X f(x)\varrho(x)dx$$
 and $\int_X \varrho(x)dx$

do not generally coincide, creating a "conflict" in the important integration domain of $\langle f \rangle$.

- This is a general problem found in any weighting ϱ
- Re-weighting suffers from it too, though not as seriously as

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Overlap problem

Important integration domain

The subset of X that contributes the most to the integral $\langle f \rangle$. Grows with sample size.

The "important" integration domains of

$$\int_X f(x)\varrho(x)dx$$
 and $\int_X \varrho(x)dx$

do not generally coincide, creating a "conflict" in the important integration domain of $\langle f \rangle$.

- This is a general problem found in any weighting ϱ
- Re-weighting suffers from it too, though not as seriously as

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Overlap problem

Important integration domain

The subset of X that contributes the most to the integral $\langle f \rangle$. Grows with sample size.

The "important" integration domains of

$$\int_X f(x)\varrho(x)dx$$
 and $\int_X \varrho(x)dx$

do not generally coincide, creating a "conflict" in the important integration domain of $\langle f \rangle$.

- This is a general problem found in any weighting ϱ
- Re-weighting suffers from it too, though not as seriously as:

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Sign Problem

The expectation value and relative error estimated by N independent measurements of $e^{i\vartheta}$ scale with the number of degrees of freedom dim X as

$$\langle e^{i\vartheta} \rangle_0 \propto e^{-\dim X}$$
 and $\frac{\Delta \langle e^{i\vartheta} \rangle_0}{\langle e^{i\vartheta} \rangle_0} \propto \frac{1}{\sqrt{N}} e^{\dim X}$

meaning $N \propto e^{2 \dim X}$ at least which is prohibitive.

The presence of sign or phase factor in the integrand prevents thermalization (arrival at the important integration domain).

Motivation The Problem Solutions (so far)

Sign Problem

The expectation value and relative error estimated by N independent measurements of $e^{i\vartheta}$ scale with the number of degrees of freedom dim X as

$$\langle e^{i\vartheta} \rangle_0 \propto e^{-\dim X}$$
 and $\frac{\Delta \langle e^{i\vartheta} \rangle_0}{\langle e^{i\vartheta} \rangle_0} \propto \frac{1}{\sqrt{N}} e^{\dim X}$

meaning $N \propto e^{2 \dim X}$ at least which is prohibitive.

The presence of sign or phase factor in the integrand prevents thermalization (arrival at the important integration domain).

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

• Assume a lattice \mathbbm{L} of

- volume (number of sites) Ω (thermodynamic limit)
- spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbb{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

< □ > < 合 > < 言 >	

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

《 □ 》 《 🗗 》 《 三 》	

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

continuous	. discrete

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

continuous	discrete
fields $\phi(x)$	ectors ϕ_x

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

continuous	discrete
field operators	vector matrices
	《曰》《卽》《言》《言》 말 《

Motivation The Problem Solutions (so far)

Lattice regularization $(\ell = 1)$

- Assume a lattice \mathbbm{L} of
 - volume (number of sites) Ω (thermodynamic limit)
 - spacing (link size) $\ell = 1$ (continuum limit)
- thermodynamic/continuum limit $X \leftarrow \lim_{\Omega \to \infty} \lim_{\ell \to 0} \mathbb{L}$

Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory

Action

$$S = \int_X dx \mathcal{L}(x) \longleftarrow \sum_x \mathcal{L}_x$$

Partition function (path integral)

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \exp(-S[\phi])$$

Observables ((ground) expectation values)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \mathcal{O}[\phi] \exp(-S[\phi])$$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory

Action

$$S = \int_X dx \mathcal{L}(x) \longleftarrow \sum_x \mathcal{L}_x$$

Partition function (path integral)

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \exp(-S[\phi])$$

Observables ((ground) expectation values)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \mathcal{O}[\phi] \exp(-S[\phi])$$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory

Action

$$S = \int_X dx \mathcal{L}(x) \longleftarrow \sum_x \mathcal{L}_x$$

Partition function (path integral)

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \exp(-S[\phi])$$

Observables ((ground) expectation values)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} \phi \mathcal{O}[\phi] \exp(-S[\phi]) \longleftarrow \prod_x \int d\phi_x \mathcal{O}[\phi] \exp(-S[\phi])$$

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory Complex action

• The problem then becomes that of a *complex action*'s

$$S = S_0 - j\Gamma$$

where j is **a** complex unity.

• partition functions assume a phase factor

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) = \int \mathcal{D}\phi \exp(\jmath\Gamma) \exp(-S_0[\phi])$$

• typical lattice simulation techniques fail
Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory Complex action

• The problem then becomes that of a *complex action*'s

$$S = S_0 - j\Gamma$$

where j is **a** complex unity.

• partition functions assume a phase factor

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) = \int \mathcal{D}\phi \exp(\jmath\Gamma) \exp(-S_0[\phi])$$

• typical lattice simulation techniques fail

Stratos Kovalkov Papadoudis Complex Action Problem

Motivation The Problem Solutions (so far)

(Scalar) Quantum Field Theory Complex action

• The problem then becomes that of a *complex action*'s

$$S = S_0 - j\Gamma$$

where j is **a** complex unity.

• partition functions assume a phase factor

$$Z = \int \mathcal{D}\phi \exp(-S[\phi]) = \int \mathcal{D}\phi \exp(\jmath\Gamma) \exp(-S_0[\phi])$$

• typical lattice simulation techniques fail

Stratos Kovalkov Papadoudis Complex Action Problem

Motivation The Problem Solutions (so far)

Outline

- Motivation
- The Problem
- Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics
- 3 Silver-Blaze phenomenon
 - Discrete Langevin dynamics
 - Relativistic Bose gas and simulations on a lattice
 - Summary

Motivation The Problem Solutions (so far)

QCD at low density

- re-weighting (modified)
- Taylor expansion
- imaginary chemical potential

Stratos Kovalkov Papadoudis C

Motivation The Problem Solutions (so far)

- re-weighting (modified)
- Taylor expansion
- imaginary chemical potential

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

- re-weighting (modified)
- Taylor expansion
- imaginary chemical potential

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

- re-weighting (modified)
- Taylor expansion
- imaginary chemical potential

Stratos Kovalkov Papadoudis C

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large $N_{\rm color}$ limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large $N_{\rm color}$ limit

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Motivation The Problem Solutions (so far)

Solutions (so far)

at high density

- (complex) Langevin equation (stochastic quantization)
- Lefschetz thimbles (sister to complex Langevin equation)
- worm algorithms (and various supplementary ideas)
- effective 3D theories
- histogram method
- factorization (or density of state) method (among us!)
- imaginary chemical potential (generalized)
- fugacity expansion
- dimensional reduction
- large N_{color} limit

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distrib Complex Langevin dynamics

Outline

1 Complex Action Problem

- Motivation
- The Problem
- Solutions (so far)

Stochastic quantization

- Langevin equation
- Fokker-Planck equation and distribution
- Complex Langevin dynamics

³ Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi, Y.-S. Wu, Sci. Sinica 24 (1981) 483

So what is stochastic quantization anyway?

Instead of scanning the pre-existent configurations space...

Bonus! We get a configuration markovian chain in one package.

Stratos Kovalkov Papadoudis Compl

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi, Y.-S. Wu, Sci. Sinica 24 (1981) 483

So what is stochastic quantization anyway?

Instead of scanning the pre-existent configurations space...

Bonus! We get a configuration markovian chain in one package.

Stratos Kovalkov Papadoudis Compl

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi, Y.-S. Wu, Sci. Sinica 24 (1981) 483

So what is stochastic quantization anyway?

Instead of scanning the pre-existent configurations space... ...we let a (fictional) time τ -process procude it instead.

Bonus! We get a configuration markovian chain in one package.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi, Y.-S. Wu, Sci. Sinica 24 (1981) 483

So what is stochastic quantization anyway?

Instead of scanning the pre-existent configurations space... ...we let a (fictional) time τ -process procude it instead.

Bonus! We get a configuration markovian chain in one package.

Stratos Kovalkov Papadoudis Co

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi, Y.-S. Wu, Sci. Sinica 24 (1981) 483

So what is stochastic quantization anyway?

Instead of scanning the pre-existent configurations space... ...we let a (fictional) time τ -process procude it instead.

Bonus! We get a configuration markovian chain in one package.

Stratos Kovalkov Papadoudis Complex Action Problem

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift
$$(K \in \mathbb{R})$$

$$K(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S[\phi]$$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift $(K \in \mathbb{R})$

$$K(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S[\phi]$$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift
$$(K \in \mathbb{R})$$

$$K(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S[\phi]$$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift $(K \in \mathbb{R})$ with (hermitian positive-definite) kernel \mathcal{K} $K(\phi(x)) = -\int dx' \mathcal{K}(x, x') \frac{\delta}{\delta \phi(x')} S[\phi]$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\mathcal{K}(x,x')\delta(\tau-\tau')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift $(K \in \mathbb{R})$ with (hermitian positive-definite) kernel \mathcal{K} $K(\phi(x)) = -\int dx' \mathcal{K}(x, x') \frac{\delta}{\delta \phi(x')} S[\phi]$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\mathcal{K}(x,x')\delta(\tau-\tau')$$

$$\mathcal{K}(x, x') = -\delta(x - x')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Langevin equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

(real) Langevin equation
$$(\phi \in \mathbb{R}, S \in \mathbb{R})$$

$$\frac{\partial}{\partial \tau} \phi(x, \tau) = K(\phi(x, \tau)) + \eta(x, \tau) \qquad \phi(x, \tau_0) = \phi_0(x)$$

(real) drift $(K \in \mathbb{R})$ with (hermitian positive-definite) kernel \mathcal{K} $K(\phi(x)) = -\int dx' \mathcal{K}(x, x') \frac{\delta}{\delta \phi(x')} S[\phi]$

(real gaussian) noise

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\mathcal{K}(x,x')\delta(\tau-\tau')$$

 $\mathcal{K}(x,x') = \alpha^2 \delta(x-x') \qquad \alpha \in \mathbb{R}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$

Stratos Kovalkov Papadoudis C

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges.

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$

Stratos Kovalkov Papadoudis C

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate

Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

Stratos Kovalkov Papadoudis Co

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate

Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$

Stratos Kovalkov Papadoudis Compl

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate

Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$

$$\langle \mathcal{O} \rangle = \int \mathcal{D} \eta \rho[\eta] \mathcal{O}[\phi_{\infty}]$$

Stratos Kovalkov Papadoudis Con
Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$
$$= \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi_{\infty}] \qquad \rho[\eta] = \rho_0^{-1} \exp\left(-\frac{1}{4} \int d^{\dim X} x(\eta(x))^2\right)$$

Stratos Kovalkov Papadoudis

 $' \mathcal{O}$

./

Complex Action Problem

.J X

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi_{\infty}] \qquad \rho[\eta] = \rho_0^{-1} \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right)$$

$$\frac{\delta}{\delta\phi(x)}S[\phi] = \eta(x)$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization postulate Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

- At the limit of large Langevin time $\tau \to \infty$:
 - equilibrium is reached at which...
 - ...target field theory (defined by action S) emerges

$$\lim_{\tau \to \infty} \left\langle \prod_{i=1}^{N} \phi(x_i, \tau) \right\rangle = \left\langle \prod_{i=1}^{N} \phi_{\infty}(x_i) \right\rangle$$
$$\rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi_{\infty}] \qquad \rho[\eta] = \rho_0^{-1} \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right)$$

$$\frac{\delta}{\delta \phi(x)} S[\phi] = \eta(x) \qquad \left\langle \frac{\delta}{\delta \phi(x)} S[\phi] \right\rangle = 0$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Outline

1) Complex Action Problem

- Motivation
- The Problem
- Solutions (so far)

Stochastic quantization

- Langevin equation
- Fokker-Planck equation and distribution
- Complex Langevin dynamics

3 Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 483

Langevin equation is stochastic.

Therefore its solutions are as random as itself!

Every configuration ϕ in the full configuration space has a probability $\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle$ of being an instance at time τ of a solution $\phi(\tau)$ of said Langevin equation.

What's with Dirac 's bra-ket $\langle _ _ _ \rangle$ symbol here?

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 483

Langevin equation is stochastic.

Therefore its solutions are as random as itself!

Every configuration ϕ in the full configuration space has a probability $\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle$ of being an instance at time τ of a solution $\phi(\tau)$ of said Langevin equation.

What's with Dirac 's bra-ket $\langle _ _ _ \rangle$ symbol here?

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 483

Langevin equation is stochastic.

Therefore its solutions are as random as itself!

Every configuration ϕ in the full configuration space has a probability $\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle$ of being an instance at time τ of a solution $\phi(\tau)$ of said Langevin equation.

What's with Dirac 's bra-ket $\langle | _ | \rangle$ symbol here?

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 4S3

Langevin equation is stochastic.

Therefore its solutions are as random as itself!

Every configuration ϕ in the full configuration space has a probability $\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle$ of being an instance at time τ of a solution $\phi(\tau)$ of said Langevin equation.

What's with Dirac 's bra-ket $\langle | | \rangle$ symbol here?

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 4S3

The Langevin process is actually a markovian one,

$$\langle \phi | \wp(\tau, \tau'') | \phi'' \rangle = \int \mathcal{D}\phi \langle \phi | \wp(\tau, \tau') | \phi' \rangle \langle \phi' | \wp(\tau', \tau'') | \phi'' \rangle$$

or $\wp(\tau,\tau'') = \wp(\tau,\tau')\wp(\tau',\tau'')$ in operator notation.

Hint! Looks like a path integral makes sense in this context.

The whole formulation develops on Langevin time τ as well as spacetime X. (extra degrees of freedom)

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 483

The Langevin process is actually a markovian one,

$$\langle \phi | \wp(\tau, \tau'') | \phi'' \rangle = \int \mathcal{D}\phi \langle \phi | \wp(\tau, \tau') | \phi' \rangle \langle \phi' | \wp(\tau', \tau'') | \phi'' \rangle$$

or $\wp(\tau,\tau'') = \wp(\tau,\tau')\wp(\tau',\tau'')$ in operator notation.

Hint! Looks like a path integral makes sense in this context.

The whole formulation develops on Langevin time τ as well as spacetime X. (extra degrees of freedom)

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Stochastic quantization G. Parisi and Y.-S. Wu, Sci. Sinica 24 (1981) 4S3

The Langevin process is actually a markovian one,

$$\langle \phi | \wp(\tau, \tau'') | \phi'' \rangle = \int \mathcal{D}\phi \langle \phi | \wp(\tau, \tau') | \phi' \rangle \langle \phi' | \wp(\tau', \tau'') | \phi'' \rangle$$

or $\wp(\tau,\tau'') = \wp(\tau,\tau')\wp(\tau',\tau'')$ in operator notation.

Hint! Looks like a path integral makes sense in this context.

The whole formulation develops on Langevin time τ as well as spacetime X. (extra degrees of freedom)

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Fokker-Planck equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

$\forall \tau \text{ in equilibrium (postulated)}$

$$\langle \mathcal{O}(\tau) \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi(\tau)] = \int \mathcal{D}\phi \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle \mathcal{O}[\phi]$$

$\langle \phi | \varphi(\tau, \tau_0) | \phi_0 \rangle = \langle \delta | \phi - \phi(\tau)] \rangle \qquad \quad \langle \phi | \varphi(\tau_0, \tau_0) | \phi_0 \rangle = \delta | \phi - \phi_0]$

Fokker-Planck equation

$$\begin{aligned} \frac{\partial}{\partial \tau} \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle &= \int_X d^{\dim X} x \\ &\frac{\delta}{\delta \phi(x)} \left(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \right) \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle \end{aligned}$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Fokker-Planck equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

$\forall \tau$ in equilibrium (postulated)

$$\langle \mathcal{O}(\tau) \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi(\tau)] = \int \mathcal{D}\phi \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle \mathcal{O}[\phi]$$

$$\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle = \langle \delta[\phi - \phi(\tau)] \rangle$$

Fokker-Planck equation

$$\begin{aligned} \frac{\partial}{\partial \tau} \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle &= \int_X d^{\dim X} x \\ \frac{\delta}{\delta \phi(x)} \bigg(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \bigg) \langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle \end{aligned}$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Fokker-Planck equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

$\forall \tau$ in equilibrium (postulated)

$$\langle \mathcal{O}(\tau) \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi(\tau)] = \int \mathcal{D}\phi \langle \phi|_{\mathscr{O}}(\tau,\tau_0) |\phi_0\rangle \mathcal{O}[\phi]$$

$$\langle \phi | \wp(au, au_0) | \phi_0
angle = \langle \delta[\phi - \phi(au)]
angle \qquad \langle \phi | \wp(au_0, au_0) | \phi_0
angle = \delta[\phi - \phi_0]$$

Fokker-Planck equation

$$\begin{split} \frac{\partial}{\partial \tau} \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle &= \int_X d^{\dim X} x \\ & \frac{\delta}{\delta \phi(x)} \bigg(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \bigg) \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle \end{split}$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Fokker-Planck equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

$\forall \tau$ in equilibrium (postulated)

$$\langle \mathcal{O}(\tau) \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi(\tau)] = \int \mathcal{D}\phi \langle \phi|_{\mathscr{O}}(\tau,\tau_0) |\phi_0\rangle \mathcal{O}[\phi]$$

$$\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle = \langle \delta[\phi - \phi(\tau)] \rangle \qquad \qquad \langle \phi | \wp(\tau_0, \tau_0) | \phi_0 \rangle = \delta[\phi - \phi_0]$$

Fokker-Planck equation

$$\begin{split} \frac{\partial}{\partial \tau} \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle &= \int_X d^{\dim X} x \\ & \frac{\delta}{\delta \phi(x)} \bigg(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \bigg) \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle \end{split}$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Fokker-Planck equation Poul H. Damgaard, Helmuth Hüffel 152, Nos. 5 & 6 (1987) 227-398

$\forall \tau \text{ in equilibrium (postulated)}$

$$\langle \mathcal{O}(\tau) \rangle = \int \mathcal{D}\eta \rho[\eta] \mathcal{O}[\phi(\tau)] = \int \mathcal{D}\phi \langle \phi|\wp(\tau,\tau_0)|\phi_0\rangle \mathcal{O}[\phi]$$

$\langle \phi | \wp(\tau, \tau_0) | \phi_0 \rangle = \langle \delta[\phi - \phi(\tau)] \rangle \qquad \qquad \langle \phi | \wp(\tau_0, \tau_0) | \phi_0 \rangle = \delta[\phi - \phi_0]$

Fokker-Planck equation with kernel \mathcal{K}

$$\begin{split} \frac{\partial}{\partial \tau} \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle &= \int_X d^{\dim X} x \int_X d^{\dim X} x' \\ \frac{\delta}{\delta \phi(x)} \mathcal{K}(x,x') \bigg(\frac{\delta}{\delta \phi(x')} + \frac{\delta}{\delta \phi(x')} S[\phi] \bigg) \langle \phi | \wp(\tau,\tau_0) | \phi_0 \rangle \end{split}$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Static (equilibrium) solution

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113.

static Fokker-Planck equation $$\begin{split} &\int_X d^{\dim X} x \\ & \frac{\delta}{\delta \phi(x)} \bigg(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \bigg) \langle \phi | \wp | \phi_0 \rangle = 0 \end{split}$$

static solution to Fokker-Planck equation (exists!) $\langle \phi | \varphi_{\infty} | \phi_0 \rangle = Z^{-1} \exp(-S[\phi])$

Stratos Kovalkov Papadoudis Comple

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Static (equilibrium) solution

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113.

static Fokker-Planck equation $$\begin{split} &\int_X d^{\dim X} x \\ &\frac{\delta}{\delta \phi(x)} \bigg(\frac{\delta}{\delta \phi(x)} + \frac{\delta}{\delta \phi(x)} S[\phi] \bigg) \langle \phi | \wp | \phi_0 \rangle = 0 \end{split}$$

static solution to Fokker-Planck equation (exists!) $\langle \phi | \varphi_{\infty} | \phi_0 \rangle = Z^{-1} \exp(-S[\phi])$

Stratos Kovalkov Papadoudis Compl

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Static (equilibrium) solution

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113.

static Fokker-Planck equation with kernel ${\cal K}$

$$\int_{X} d^{\dim X} x \int_{X} d^{\dim X} x' \frac{\delta}{\delta \phi(x)} \mathcal{K}(x, x') \left(\frac{\delta}{\delta \phi(x')} + \frac{\delta}{\delta \phi(x')} S[\phi] \right) \langle \phi | \wp | \phi_0 \rangle = 0$$

static solution to Fokker-Planck equation (is the same!)

$$\langle \phi | \wp_{\infty} | \phi_0 \rangle = Z^{-1} \exp(-S[\phi])$$

Stratos Kovalkov Papadoudis C

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

- generate configurations via Langevin process in equilibrium
- calculate observables in ensemble with noise distribution
 - instances of the Langevin process depend on the noise
 - ullet we let the Langevin process do all the (markovian) work
- stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

generate configurations via Langevin process in equilibrium
calculate observables in ensemble with noise distribution

• stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

• generate configurations via Langevin process in equilibrium

- calculate observables in ensemble with noise distribution
 - instances of the Langevin process depend on the noise
 - we let the Langevin process do all the (markovian) work
- stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

- generate configurations via Langevin process in equilibrium
- calculate observables in ensemble with noise distribution
 - instances of the Langevin process depend on the noise
 - we let the Langevin process do all the (markovian) work
- stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

• generate configurations via Langevin process in equilibrium

- calculate observables in ensemble with noise distribution
 - instances of the Langevin process depend on the noise
 - we let the Langevin process do all the (markovian) work
- stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Feynman path integral emergence

JEAN ZINN-JUSTIN. International Series of Monographs on Physics 113. POUL H. DAMGAARD, HELMUTH HÜFFEL 152, Nos. 5 & 6 (1987) 227-398

 $\forall \tau$ in equilibrium (postulated)

$$\begin{aligned} \langle \mathcal{O}(\tau) \rangle &= \rho_0^{-1} \int \mathcal{D}\eta \mathcal{O}[\phi(\tau)] \exp\left(-\frac{1}{4} \int_X d^{\dim X} x(\eta(x))^2\right) = \\ &= Z^{-1} \int \mathcal{D}\phi \mathcal{O}[\phi] \exp(-S[\phi]) \end{aligned}$$

• generate configurations via Langevin process in equilibrium

- calculate observables in ensemble with noise distribution
 - instances of the Langevin process depend on the noise
 - we let the Langevin process do all the (markovian) work
- stochastic calculation matches that of path integral's!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Outline

1) Complex Action Problem

- Motivation
- The Problem
- Solutions (so far)

Stochastic quantization

- Langevin equation
- Fokker-Planck equation and distribution
- Complex Langevin dynamics

3 Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis Compl

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis Comp

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis C

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Extension to complex Langevin

Stochastic quantization is solid in theory for $\phi \in \mathbb{R}$ and $S \in \mathbb{R}$.

Does (Can) it break when $\phi \in \mathbb{C}$?

And what about $S \in \mathbb{C}$?

We already see a problem with $S \in \mathbb{C}$.

 $\exp(-S)$ is complex and cannot be interpreted as probability!

But first things first...

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

$\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + \imath \phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Q_{abc}

・ (日) 《 団 》 《 団 》 《 団 》 (日 》 (

Stratos Kovalkov Papadoudis C

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

$\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

abstract	index notation

 $arphi_a \ \phi_0 \ \phi_1$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis Com

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

$\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis
Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

 $igodot_{abc} = \bigcirc_{bac}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

Complex index notation

 $\forall \phi \in \mathbb{C}, \ \phi = \alpha^{-1}(\phi_0 + i\phi_1) \text{ where } \alpha > 0 \text{ is a normalization.}$

$$igodot_{abc} = \bigcirc_{ba}$$

 $\Diamond_{ab} \bigcirc_{bcd} = \bigcirc_{afe} \Diamond_{fd} \Diamond_{ec}$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi_a(x,\tau) = K_a(\phi(x,\tau)) + \eta_a(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi_a(x)}S[\phi]$$

 $\langle \eta_a(x,\tau)\eta_{a'}(x',\tau')\rangle = 2\delta_{aa'}\delta(x-x')\delta(\tau-\tau')$

 $\alpha_{aa} \le \delta_{aa} = \dim_{\mathbb{R}} \mathbb{C} = 2$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi_a(x,\tau) = K_a(\phi(x,\tau)) + \eta_a(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi_a(x)}S[\phi]$$

 $\langle \eta_a(x,\tau)\eta_{a'}(x',\tau')\rangle = 2\delta_{aa'}\delta(x-x')\delta(\tau-\tau')$

 $\alpha_{aa} \le \delta_{aa} = \dim_{\mathbb{R}} \mathbb{C} = 2$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi_a(x,\tau) = K_a(\phi(x,\tau)) + \eta_a(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi_a(x)}S[\phi]$$

$$\langle \eta_a(x,\tau)\eta_{a'}(x',\tau')\rangle = 2\delta_{aa'}\delta(x-x')\delta(\tau-\tau')$$

 $\alpha_{aa} \leq \delta_{aa} = \dim_{\mathbb{R}} \mathbb{C} = 2$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi_a(x,\tau) = K_a(\phi(x,\tau)) + \eta_a(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi_a(x)}S[\phi]$$

$$\langle \eta_a(x,\tau)\eta_{a'}(x',\tau')\rangle = 2\alpha_{aa'}\delta(x-x')\delta(\tau-\tau')$$

 $\alpha_{aa} \le \delta_{aa} = \dim_{\mathbb{R}} \mathbb{C} = 2$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\delta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \frac{\delta}{\delta \phi_a(x)} S[\phi] \right)$$

equilibrium distribution

 $\langle \phi | \wp_{\infty} | \phi_0
angle \propto \exp(-S[\phi])$

Stratos Kovalkov Papadoudis Comp

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\delta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \frac{\delta}{\delta \phi_a(x)} S[\phi] \right)$$

equilibrium distribution

 $\langle \phi | \wp_{\infty} | \phi_0 \rangle \propto \exp(-S[\phi])$

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\frac{\alpha_{aa'}}{\delta \phi_{a'}(x)} + \frac{\delta}{\delta \phi_a(x)} S[\phi] \right)$$

equilibrium distribution

$$\wp_{\infty}[\phi] \propto \exp(-\alpha \bot S[\phi]) \exp(-(1-\alpha) \bot T[\phi])$$

The Feynman path integral is lost for the full theory!

Unless of course $\alpha_{aa'} = \delta_{aa'}$, i.e. *full noise* is taken.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{R}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\frac{\alpha_{aa'}}{\delta \phi_{a'}(x)} + \frac{\delta}{\delta \phi_a(x)} S[\phi] \right)$$

equilibrium distribution

$$\wp_{\infty}[\phi] \propto \exp(-\alpha \bot S[\phi]) \exp(-(1-\alpha) \bot T[\phi])$$

The Feynman path integral is lost for the full theory!

Unless of course $\alpha_{aa'} = \delta_{aa'}$, i.e. *full noise* is taken.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi(x,\tau) = K_a(\phi(x,\tau)) + \eta(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi(x)} S_a[\phi]$$

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + \jmath S_1$

A distinct from field's complex unity j plus no normalization.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi(x,\tau) = K_a(\phi(x,\tau)) + \eta(x,\tau)$$

$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S_a[\phi]$$

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + \jmath S_1$

A distinct from field's complex unity j plus no normalization.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi(x,\tau) = K_a(\phi(x,\tau)) + \eta(x,\tau)$$
$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S_a[\phi]$$
$$(n(x,\tau)n(x',\tau')) = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + \jmath S_1$

A distinct from field's complex unity j plus no normalization.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi(x,\tau) = K_a(\phi(x,\tau)) + \eta(x,\tau)$$
$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S_a[\phi]$$

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + jS_1$

A distinct from field's complex unity j plus no normalization.

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau}\phi(x,\tau) = K_a(\phi(x,\tau)) + \eta(x,\tau)$$
$$K_a(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S_a[\phi]$$

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + jS_1$

A distinct from field's complex unity \jmath plus no normalization.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{R}$ and $S \in \mathbb{C}$

Langevin equation

$$\frac{\partial}{\partial \tau} \phi(x,\tau) = K_{\mathbf{a}}(\phi(x,\tau)) + \eta(x,\tau)$$

$$K_{a}(\phi(x)) = -\frac{\delta}{\delta\phi(x)}S_{a}[\phi]$$

$$\langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\delta(x-x')\delta(\tau-\tau')$$

We assume: $S = S_0 + \jmath S_1$

Something's very wrong here!

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Langevin equation

$$rac{\partial}{\partial au} \phi_a(x, au) = K_a(\phi(x, au)) + \eta_a(x, au)$$

$$K_a(\phi(x)) = -eta^{-1} ullet_{abc} rac{\delta}{\delta \phi_b(x)} S_c[\phi]$$

$$\langle \eta_a(x,\tau)\eta_{a'}(x',\tau')\rangle = 2\beta_{aa'}\delta(x-x')\delta(\tau-\tau')$$

We assume: $\overline{S} = S_0 + jS_1$

We fix by extending real fields to complex: $\phi = \beta^{-1}(\phi_0 + \jmath \phi_1)$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

(modified) action

Technically, the action in its original from is non-writable in index form.

After field complexification however, S_a becomes a valid symbol.

Alas, S_0 is no longer the phase-quenched (more like phase-sqeezed) model but a whole new action involving full parameter information of the original action.

Even the original imaginary part! The parameters actually spread out even in both parts of the new action S_a .

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

(modified) action

Technically, the action in its original from is non-writable in index form.

After field complexification however, S_a becomes a valid symbol.

Alas, S_0 is no longer the phase-quenched (more like phase-sqeezed) model but a whole new action involving full parameter information of the original action.

Even the original imaginary part! The parameters actually spread out even in both parts of the new action S_a .

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

(modified) action

Technically, the action in its original from is non-writable in index form.

After field complexification however, S_a becomes a valid symbol.

Alas, S_0 is no longer the phase-quenched (more like phase-squeezed) model but a whole new action involving full parameter information of the original action.

Even the original imaginary part! The parameters actually spread out even in both parts of the new action S_a .

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

(modified) action

Technically, the action in its original from is non-writable in index form.

After field complexification however, S_a becomes a valid symbol.

Alas, S_0 is no longer the phase-quenched (more like phase-squeezed) model but a whole new action involving full parameter information of the original action.

Even the original imaginary part! The parameters actually spread out even in both parts of the new action S_a .

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \bullet_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

 $\beta_{aa} < \delta_{aa}$ doesn't necessarily mean loss of information.

The imaginary part ϕ_1 is auxiliary to start with.

However S_0 is yet "unrecognizable".

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \bullet_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

$\beta_{aa} < \delta_{aa}$ doesn't necessarily mean loss of information.

The imaginary part ϕ_1 is auxiliary to start with.

However S_0 is yet "unrecognizable".

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \bullet_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

 $\beta_{aa} < \delta_{aa}$ doesn't necessarily mean loss of information.

The imaginary part ϕ_1 is auxiliary to start with.

However S_0 is yet "unrecognizable".

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \bullet_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

 $\beta_{aa} < \delta_{aa}$ doesn't necessarily mean loss of information.

The imaginary part ϕ_1 is auxiliary to start with.

However S_0 is yet "unrecognizable".

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \bullet_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

equilibrium distribution

 $\wp_{\infty}[\phi] \propto \exp(-g[\phi])$

 $g[\phi] = g_a S_a[\phi]$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \mathbf{\bullet}_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

equilibrium distribution

 $\wp_\infty[\phi] \propto \exp(-g[\phi])$

$g[\phi] = g_a S_a[\phi]$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \mathbf{\bullet}_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

equilibrium distribution

 $\wp_{\infty}[\phi] \propto \exp(-g[\phi])$

 $g[\phi] = g_a S_a[\phi]$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_X d^{\dim X} x \frac{\delta}{\delta \phi_a(x)} \left(\beta_{aa'} \frac{\delta}{\delta \phi_{a'}(x)} + \mathbf{\bullet}_{abc} \frac{\delta}{\delta \phi_b(x)} S_c[\phi] \right)$$

equilibrium distribution

 $\wp_\infty[\phi] \propto \exp(-g[\phi])$

$g[\phi] = g_a S_a[\phi]$

Stratos Kovalkov Papadoudis
Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

(bi)complex fields

$$\alpha_{aa} = \alpha^2 = 2$$

$$\beta_{aa} = \beta^2 = 1$$

 $\sqrt{2}\phi = (\phi_{00} + \jmath\phi_{01}) + \imath(\phi_{10} + \jmath\phi_{11})$

$$\frac{\partial}{\partial \tau}\phi_{ab}(x,\tau) = K_{ab}(\phi(x,\tau)) + 1_b\eta_a(x,\tau)$$

$$K_{ab}(\phi(x)) = - \bigoplus_{bcd} \frac{\delta}{\delta \phi_{ac}(x)} S_d[\phi]$$

$\langle \eta_{ab}(x,\tau)\eta_{a'b'}(x',\tau')\rangle = 2\delta_{aa'}1_b1_{b'}\delta(x-x')\delta(\tau-\tau')$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

(bi)complex fields

$$\alpha_{aa} = \alpha^2 = 2$$

$$\beta_{aa} = \beta^2 = 1$$

$$\sqrt{2}\phi = (\phi_{00} + \jmath\phi_{01}) + \imath(\phi_{10} + \jmath\phi_{11})$$

$$\frac{\partial}{\partial \tau}\phi_{ab}(x,\tau) = K_{ab}(\phi(x,\tau)) + 1_b\eta_a(x,\tau)$$

$$K_{ab}(\phi(x)) = - \bigoplus_{bcd} \frac{\delta}{\delta \phi_{ac}(x)} S_d[\phi]$$

$\langle \eta_{ab}(x,\tau)\eta_{a'b'}(x',\tau')\rangle = 2\delta_{aa'}1_b1_{b'}\delta(x-x')\delta(\tau-\tau')$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

(bi)complex fields

$$\alpha_{aa} = \alpha^2 = 2$$

$$\beta_{aa} = \beta^2 = 1$$

$$\sqrt{2}\phi = (\phi_{00} + \jmath\phi_{01}) + \imath(\phi_{10} + \jmath\phi_{11})$$

$$\frac{\partial}{\partial \tau}\phi_{ab}(x,\tau) = K_{ab}(\phi(x,\tau)) + 1_b\eta_a(x,\tau)$$

$$K_{ab}(\phi(x)) = -\bigoplus_{bcd} \frac{\delta}{\delta\phi_{ac}(x)} S_d[\phi]$$

$\langle \eta_{ab}(x,\tau)\eta_{a'b'}(x',\tau')\rangle = 2\delta_{aa'}1_b1_{b'}\delta(x-x')\delta(\tau-\tau')$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

(bi)complex fields

$$\alpha_{aa} = \alpha^2 = 2$$

$$\beta_{aa} = \beta^2 = 1$$

$$\sqrt{2}\phi = (\phi_{00} + \jmath\phi_{01}) + \imath(\phi_{10} + \jmath\phi_{11})$$

$$\frac{\partial}{\partial \tau}\phi_{ab}(x,\tau) = K_{ab}(\phi(x,\tau)) + 1_b\eta_a(x,\tau)$$

$$K_{ab}(\phi(x)) = - \bigoplus_{bcd} \frac{\delta}{\delta \phi_{ac}(x)} S_d[\phi]$$

$\langle \eta_{ab}(x,\tau)\eta_{a'b'}(x',\tau')\rangle = 2\delta_{aa'}1_b1_{b'}\delta(x-x')\delta(\tau-\tau')$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

(bi)complex fields

$$\alpha_{aa} = \alpha^2 = 2$$

$$\beta_{aa} = \beta^2 = 1$$

$$\sqrt{2}\phi = (\phi_{00} + \jmath\phi_{01}) + \imath(\phi_{10} + \jmath\phi_{11})$$

$$\frac{\partial}{\partial \tau}\phi_{ab}(x,\tau) = K_{ab}(\phi(x,\tau)) + 1_b\eta_a(x,\tau)$$

$$K_{ab}(\phi(x)) = - \bigoplus_{bcd} \frac{\delta}{\delta \phi_{ac}(x)} S_d[\phi]$$

$$\langle \eta_{ab}(x,\tau)\eta_{a'b'}(x',\tau')\rangle = 2\delta_{aa'}\mathbf{1}_b\mathbf{1}_{b'}\delta(x-x')\delta(\tau-\tau')$$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{a}(x)} \frac{\delta}{\delta \phi_{a}(x)} + \bullet_{bcd} \int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{ab}(x)} \frac{\delta}{\delta \phi_{ac}(x)} S_{d}[\phi]$$

$$\phi_{a} = \phi_{a0}$$

equilibrium distribution

 $\wp_{\infty}[\phi] \propto \exp(-g_0[\phi]) \exp(-g_1[\phi])$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian $\int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{a}(x)} \frac{\delta}{\delta \phi_{a}(x)} + \bullet_{bcd} \int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{ab}(x)} \frac{\delta}{\delta \phi_{ac}(x)} S_{d}[\phi]$ $\phi_{a} = \phi_{a0}$

equilibrium distribution

 $\wp_{\infty}[\phi] \propto \exp(-g_0[\phi]) \exp(-g_1[\phi])$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$$\phi \in \mathbb{C} \otimes \mathbb{C}$$
 and $S \in \mathbb{C}$

Fokker-Planck equation and equilibrium

Fokker-Planck hamiltonian

$$\int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{a}(x)} \frac{\delta}{\delta \phi_{a}(x)} + \bullet_{bcd} \int_{X} d^{\dim X} x \frac{\delta}{\delta \phi_{ab}(x)} \frac{\delta}{\delta \phi_{ac}(x)} S_{d}[\phi]$$

 φ_a

equilibrium distribution

$$\varphi_{\infty}[\phi] \propto \exp(-g_0[\phi]) \exp(-g_1[\phi])$$

 φ_{a0}

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?
 - One way we can check (quickly): simulations
 - \bullet There is also an interesting property regarding observables

Stratos Kovalkov Papadoudis Comp

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?
 - One way we can check (quickly): simulations
 - \bullet There is also an interesting property regarding observables

Stratos Kovalkov Papadoudis Co

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?

• There is also an interesting property regarding observables

Stratos Kovalkov Papadoudis Comple

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?
 - One way we can check (quickly): simulations!
 - There is also an interesting property regarding observables.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?
 - One way we can check (quickly): simulations!
 - There is also an interesting property regarding observables.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

Langevin dynamics test

- In general the Fokker-Planck distribution is away from the entropic factor $\exp(-S)$.
 - It's expected, the entropic factor is complex and unsuitable for use as a probability.
 - So there is no way to extract the path integral as it is by a (complex) Langevin process.
- So is averaging over the Langevin ensemble still valid?
 - One way we can check (quickly): simulations!
 - There is also an interesting property regarding observables.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

observables

• Typical observables defined via specific parameters in action

$$\langle \mathcal{O} \rangle = \frac{\partial}{\partial \alpha} \log_e Z = \left\langle -\frac{\partial}{\partial \alpha} S \right\rangle$$

- For complex action S, after
 - complexification of the field $\phi_a \longrightarrow \phi_{ab}$
 - extension of the action $S \longrightarrow b$
- follows extension of observables $\mathcal{O} \longrightarrow \mathcal{O}_b$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C}$ and $S \in \mathbb{C}$

observables

• Typical observables defined via specific parameters in action

$$\langle \mathcal{O} \rangle = \frac{\partial}{\partial \alpha} \log_e Z = \left\langle -\frac{\partial}{\partial \alpha} S \right\rangle$$

- For complex action S, after
 - complexification of the field $\phi_a \longrightarrow \phi_{ab}$
 - extension of the action $S \longrightarrow S_b$
- follows extension of observables $\mathcal{O} \longrightarrow \mathcal{O}_b$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

observables

• Typical observables defined via specific parameters in action

$$\langle \mathcal{O} \rangle = \frac{\partial}{\partial \alpha} \log_e Z = \left\langle -\frac{\partial}{\partial \alpha} S \right\rangle$$

- For complex action S, after
 - complexification of the field $\phi_a \longrightarrow \phi_{ab}$
 - extension of the action $S \longrightarrow S_b$
- follows extension of observables $\mathcal{O} \longrightarrow \mathcal{O}_b$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

observables

• Typical observables defined via specific parameters in action

$$\langle \mathcal{O} \rangle = \frac{\partial}{\partial \alpha} \log_e Z = \left\langle -\frac{\partial}{\partial \alpha} S \right\rangle$$

- For complex action S, after
 - complexification of the field $\phi_a \longrightarrow \phi_{ab}$
 - extension of the action $S \longrightarrow S_b$
- follows extension of observables $\mathcal{O} \longrightarrow \mathcal{O}_b$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

observables

• Typical observables defined via specific parameters in action

$$\langle \mathcal{O} \rangle = \frac{\partial}{\partial \alpha} \log_e Z = \left\langle -\frac{\partial}{\partial \alpha} S \right\rangle$$

- For complex action S, after
 - complexification of the field $\phi_a \longrightarrow \phi_{ab}$
 - extension of the action $S \longrightarrow S_b$
- follows extension of observables $\mathcal{O} \longrightarrow \mathcal{O}_b$

Stratos Kovalkov Papadoudis

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

observables

• Langevin equations respect the following symmetry

 $\phi_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} \phi_{cd}$ and $K_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} K_{cd}$

• Applying this symmetry to correlation functions,

 $\langle \phi_{ab}(x)\phi_{a'b'}(x')\rangle \propto \delta_{aa'}\delta_{bb'} + \varepsilon_{aa'}\varepsilon_{bb'}$

- and continuing with observables, $\langle \mathcal{O}_1 \rangle = 0!$
- An interesting property: the auxiliary information is gone
- However, much like the action, (O₀) is not what we think: it contains data from the full original complex observable.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

• Langevin equations respect the following symmetry

 $\phi_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} \phi_{cd}$ and $K_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} K_{cd}$

• Applying this symmetry to correlation functions,

 $\langle \phi_{ab}(x)\phi_{a'b'}(x')\rangle \propto \delta_{aa'}\delta_{bb'} + \varepsilon_{aa'}\varepsilon_{bb'}$

- and continuing with observables, $\langle \mathcal{O}_1 \rangle = 0!$
- An interesting property: the auxiliary information is gone.
- However, much like the action, (O₀) is not what we think: it contains data from the full original complex observable.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

• Langevin equations respect the following symmetry

 $\phi_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} \phi_{cd}$ and $K_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} K_{cd}$

• Applying this symmetry to correlation functions,

 $\langle \phi_{ab}(x)\phi_{a'b'}(x')\rangle \propto \delta_{aa'}\delta_{bb'} + \varepsilon_{aa'}\varepsilon_{bb'}$

- and continuing with observables, $\langle \mathcal{O}_1 \rangle = 0!$
- An interesting property: the auxiliary information is gone
- However, much like the action, (O₀) is not what we think: it contains data from the full original complex observable.

Stratos Kovalkov Papadoudis Complex

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

• Langevin equations respect the following symmetry

 $\phi_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} \phi_{cd}$ and $K_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} K_{cd}$

• Applying this symmetry to correlation functions,

 $\langle \phi_{ab}(x)\phi_{a'b'}(x')\rangle \propto \delta_{aa'}\delta_{bb'} + \varepsilon_{aa'}\varepsilon_{bb'}$

- and continuing with observables, $\langle \mathcal{O}_1 \rangle = 0!$
- An interesting property: the auxiliary information is gone.
- However, much like the action, (O₀) is not what we think: it contains data from the full original complex observable.

Langevin equation Fokker-Planck equation and distribution Complex Langevin dynamics

$\phi \in \mathbb{C} \otimes \mathbb{C} \text{ and } S \in \mathbb{C}$

• Langevin equations respect the following symmetry

 $\phi_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} \phi_{cd}$ and $K_{ab} \longrightarrow -\Diamond_{ac} \Diamond_{bd} K_{cd}$

• Applying this symmetry to correlation functions,

 $\langle \phi_{ab}(x)\phi_{a'b'}(x')\rangle \propto \delta_{aa'}\delta_{bb'} + \varepsilon_{aa'}\varepsilon_{bb'}$

- and continuing with observables, $\langle \mathcal{O}_1 \rangle = 0!$
- An interesting property: the auxiliary information is gone.
- However, much like the action, (O₀) is not what we think: it contains data from the full original complex observable.

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Outline

- 1 Complex Action Problem
 - Motivation
 - The Problem
 - Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics
 - Silver-Blaze phenomenon
 - Discrete Langevin dynamics
 - Relativistic Bose gas and simulations on a lattice
 - Summary

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Stratos Kovalkov Papadoudis Complex Ad

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discretization of Langevin time τ

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} \frac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$\bar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle \bar{\eta}_{a,x,n}\bar{\eta}_{a',x',n'} \rangle = 2\delta_{aa'}\delta_{xx'}\delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} rac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$ar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle ar{\eta}_{a,x,n} ar{\eta}_{a',x',n'}
angle = 2\delta_{aa'}\delta_{xx'}\delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} \frac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$\bar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle \bar{\eta}_{a,x,n}\bar{\eta}_{a',x',n'} \rangle = 2\delta_{aa'}\delta_{xx'}\delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} \frac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$\bar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle \bar{\eta}_{a,x,n} \bar{\eta}_{a',x',n'} \rangle = 2\delta_{aa'} \delta_{xx'} \delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

 ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} \frac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$\bar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle \bar{\eta}_{a,x,n} \bar{\eta}_{a',x',n'} \rangle = 2\delta_{aa'} \delta_{xx'} \delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis
Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Discrete Langevin equations

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon K_{ab}(\phi_{x,n}) + \sqrt{\epsilon}\bar{\eta}_{a,x,n}$$

$$K_{ab}(\phi_{x,n}) = -\bigcirc_{bcd} \frac{\partial}{\partial \phi_{ac,x,n}} S_d[\phi]$$

$$\bar{\eta} = \sqrt{\epsilon}\eta \qquad \qquad \langle \bar{\eta}_{a,x,n} \bar{\eta}_{a',x',n'} \rangle = 2\delta_{aa'} \delta_{xx'} \delta_{nn'}$$

For big enough ϵ can have runaway solutions!

Thermalization time is unknown.

 ϵ is *not* a differential (time)!

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$

$$\epsilon_n K_n = \epsilon K$$

$$= N\epsilon = \sum_n \epsilon_n$$

$$K = N^{-1} \sum_n K_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

$$\begin{split} \phi_{ab,x,n+1} &= \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n} \\ \\ \epsilon_n K_n &= \epsilon K \\ \\ \tau &= N \epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})} \\ \\ K &= N^{-1} \sum_n K_n \end{split}$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$

$$\epsilon_n K_n = \epsilon K$$

$$F = N\epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})}$$

$$K = N^{-1} \sum_n K_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$

$$\epsilon_n K_n = \epsilon K$$

$$= N\epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})}$$

$$K = N^{-1} \sum_n K_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ standard drift average

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$

$$\epsilon_n K_n = \epsilon K$$

$$N\epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})}$$

$$K = \sum_n \tau^{-1} \epsilon_n K_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$
$$\epsilon_n K_n = \epsilon K$$
$$= N\epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})}$$
$$\log K = \sum_n \tau^{-1} \epsilon_n \log K_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics

Relativistic Bose gas and simulations on a lattice Summary

Dynamic Langevin time step ϵ harmonic drift average

$$\phi_{ab,x,n+1} = \phi_{ab,x,n} + \epsilon_n K_{ab}(\phi_{x,n}) + \sqrt{\epsilon_n} \bar{\eta}_{a,x,n}$$

$$\epsilon_n K_n = \epsilon K$$

$$N\epsilon = \sum_n \epsilon_n \qquad \qquad K_n = \sqrt{\Omega^{-1} \sum_x K_a(\phi_{x,n}) K_a(\phi_{x,n})}$$

$$K = \prod_n K_n^{\tau^{-1} \epsilon_n}$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Outline

- 1 Complex Action Problem
 - Motivation
 - The Problem
 - Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics

Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Preliminaries

$$\mathcal{O}_{aa_1...a_n} = \delta_{ab_0} \prod_{i=1}^{n-1} \mathcal{O}_{b_{i-1}a_ib_i} \delta_{b_{n-1}a_n}$$

 $S = \sum_x \mathcal{L}_x$
 $\mathcal{O}_n = \Omega^{-1} \sum_x \mathcal{O}_{x,n}$
 $\langle \mathcal{O} \rangle = \sum_n \tau^{-1} \epsilon_n \mathcal{O}_n$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Preliminaries

$$\bigcirc_{aa_1...a_n} = \delta_{ab_0} \prod_{i=1}^{n-1} \bigcirc_{b_{i-1}a_i b_i} \delta_{b_{n-1}a_n}$$
 $S = \sum_x \mathcal{L}_x$

$$\langle \mathcal{O} \rangle = \sum_{n} \tau^{-1} \epsilon_n \mathcal{O}_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Preliminaries

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Preliminaries

$$\Box_{aa_1...a_n} = \delta_{ab_0} \prod_{i=1}^{n-1} \Box_{b_{i-1}a_ib_i} \delta_{b_{n-1}a_n}$$
$$S = \sum_x \mathcal{L}_x$$
$$\mathcal{O}_n = \Omega^{-1} \sum_x \mathcal{O}_{x,n}$$
$$\langle \mathcal{O} \rangle = \sum_n \tau^{-1} \epsilon_n \mathcal{O}_n$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Relativistic Bose gas

action

$$\begin{aligned} \varkappa_{\dim X} &= 2 \dim X + m^2 \\ \mathcal{L}_{d,x} &= \frac{1}{2} \varkappa_{\dim X} \bigcirc_{def} \phi_{ge,x} \phi_{gf,x} + \frac{1}{4} \lambda \bigcirc_{defgh} \phi_{ie,x} \phi_{jf,x} \phi_{ig,x} \phi_{jh,x} \\ &- \sum_{\alpha=1}^{\dim \mathbb{L}} \cosh(\ell \mu \delta_{\alpha \dim \mathbb{L}}) \delta_{de} \bigcirc_{efg} \delta_{hi} \phi_{hf,x} \phi_{ig,x+\hat{\alpha}} \\ &- \sum_{\alpha=1}^{\dim \mathbb{L}} \sinh(\ell \mu \delta_{\alpha \dim X}) \varepsilon_{de} \bigcirc_{efg} \varepsilon_{hi} \phi_{hf,x} \phi_{ig,x+\hat{\alpha}} \end{aligned}$$

Stratos Kovalkov Papadoudis Complex Action Problem

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Relativistic Bose gas drift

$$\begin{aligned} \varkappa_{\dim X} &= 2 \dim X + m^2 \\ K_{ab}(\phi_x) &= -\varkappa_{\dim X} \phi_{ab,x} - \lambda \bigcirc_{bcde} \phi_{ac,x} \phi_{fd,x} \phi_{fe,x} \\ &+ \sum_{\alpha=1}^{\dim \mathbb{L}} \cosh(\mu \delta_{\alpha \dim X}) \delta_{ac} \delta_{bd} (\phi_{cd,x+\hat{\alpha}} + \phi_{cd,x-\hat{\alpha}}) \\ &+ \sum_{\alpha=1}^{\dim \mathbb{L}} \sinh(\mu \delta_{\alpha \dim X}) \varepsilon_{ac} \varepsilon_{bd} (\phi_{cd,x+\hat{\alpha}} - \phi_{cd,x-\hat{\alpha}}) \end{aligned}$$

Stratos Kovalkov Papadoudis Comp

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Relativistic Bose gas

observables

$$\begin{split} n_{a,x} &= -\frac{\partial}{\partial(\ell\mu)} \mathcal{L}_{a,x} = \\ &= \sum_{\alpha=1}^{\dim \mathbb{L}} \sinh(\ell\mu \delta_{\alpha \dim X}) \delta_{ab} \bigcirc_{bcd} \delta_{ef} \phi_{ec,x} \phi_{fd,x+\hat{\alpha}} \\ &\quad + \sum_{\alpha=1}^{\dim \mathbb{L}} \cosh(\ell\mu \delta_{\alpha \dim X}) \varepsilon_{ab} \bigcirc_{bcd} \varepsilon_{ef} \phi_{ec,x} \phi_{fd,x+\hat{\alpha}} \\ &\quad |\phi_x|_a^2 := \frac{\partial}{\partial((\ellm)^2)} \mathcal{L}_{a,x} = \frac{1}{2} \bigcirc_{abc} \phi_{db,x} \phi_{dc,x} \end{split}$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Relativistic Bose gas

observables

$$\begin{split} n_{a,x} &= -\frac{\partial}{\partial(\ell\mu)} \mathcal{L}_{a,x} = \\ &= \sum_{\alpha=1}^{\dim \mathbb{L}} \sinh(\ell\mu\delta_{\alpha\dim X})\delta_{ab} \bigcirc_{bcd}\delta_{ef}\phi_{ec,x}\phi_{fd,x+\hat{\alpha}} \\ &+ \sum_{\alpha=1}^{\dim \mathbb{L}} \cosh(\ell\mu\delta_{\alpha\dim X})\varepsilon_{ab} \bigcirc_{bcd}\varepsilon_{ef}\phi_{ec,x}\phi_{fd,x+\hat{\alpha}} \\ &|\phi_x|_a^2 := \frac{\partial}{\partial((\ellm)^2)} \mathcal{L}_{a,x} = \frac{1}{2} \bigcirc_{abc}\phi_{db,x}\phi_{dc,x} \end{split}$$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Relativistic Bose gas

observables

$$\begin{split} n_{a,x} &= -\frac{\partial}{\partial(\ell\mu)} \mathcal{L}_{a,x} = \\ &= \sum_{\alpha=1}^{\dim \mathbb{L}} \sinh(\ell\mu \delta_{\alpha \dim X}) \delta_{ab} \bigcirc_{bcd} \delta_{ef} \phi_{ec,x} \phi_{fd,x+\hat{\alpha}} \\ &+ \sum_{\alpha=1}^{\dim \mathbb{L}} \cosh(\ell\mu \delta_{\alpha \dim X}) \varepsilon_{ab} \bigcirc_{bcd} \varepsilon_{ef} \phi_{ec,x} \phi_{fd,x+\hat{\alpha}} \\ &|\phi_x|_a^2 := \frac{\partial}{\partial((\ellm)^2)} \mathcal{L}_{a,x} = \frac{1}{2} \bigcirc_{abc} \phi_{db,x} \phi_{dc,x} \end{split}$$

Stratos Kovalkov Papadoudis

 $\langle n \rangle$

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

$\left< |\phi|^2 \right>$

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Outline

- 1 Complex Action Problem
 - Motivation
 - The Problem
 - Solutions (so far)
- 2 Stochastic quantization
 - Langevin equation
 - Fokker-Planck equation and distribution
 - Complex Langevin dynamics

Silver-Blaze phenomenon

- Discrete Langevin dynamics
- Relativistic Bose gas and simulations on a lattice
- Summary

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Conclusions

• Stochastic quantization agrees with Feynman path integral

- as long as the action is real
- and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*

- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. CHRISTOP CATTRINGER, THOMAS KLOBER, arXiv:1206.2954v2 [hep-hal] 12 December 2012.

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Conclusions

• Stochastic quantization agrees with Feynman path integral

- as long as the action is real
- and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when action is complex
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. Citatsrow CAUTRINGER, THOMAS KLODER, arXiv:1206.295482 [hep-lat] 12 December 2012

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 when noise is not full (not important)
 when action is *complex*
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. Citatsrow CAUTRINGER, THOMAS KLODER, arXiv:1206.295482 [hep-lat] 12 December 2012

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. CHRISTOR CATTRINGER: THOMAS KLOIDER: arXiv:1206.2954v2 [hep-lat] 12 December 2012.

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*

stochastic quantization keeps probability interpretation
 Feynman path integral does not...

• Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas

 results agree with other methods like dual methods. CHRISTOR, CATTRINGTR, THOMAS, KLOIDER, arXiv:1206.2951v2 [hep-lat] 12 December 2012.

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 - Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. CHRISTOR CATTRINGER, THOMAS KLOIDER, arXiv:1206.2954.v2 [hep-lat] 12 December 2012

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 - Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods. CHRISTOP CATERINGER, THOMAS KLOIDER. arXiv:1206.295 (v2 lhep-lat) 12 December 2012.

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 - Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas

 results agree with other methods like dual methods. Списток Слугизиона, Тномах Кьонык. arXiv:1206.2954v2 [hep-lat] 12 December 2012.

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 - Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods CHRISTOF CATTRINGER, THOMAS KLOIBER. arXiv:1206.2954v2 [hep-lat] 12 December 2012

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Conclusions

- Stochastic quantization agrees with Feynman path integral
 - as long as the action is real
 - and the process has full noise (all components)
- Stochastic quantization breaks with Feynman path integral
 - when noise is not full (not important)
 - when action is *complex*
 - stochastic quantization keeps probability interpretation
 - Feynman path integral does not...
- Looks like Stochastic quantization sees the Silver-Blaze phenomenon of the relativistic Bose gas
 - results agree with other methods like dual methods CHRISTOF CATTRINGER, THOMAS KLOIBER. arXiv:1206.2954v2 [hep-lat] 12 December 2012

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice Summary

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Stratos Kovalkov Papadoudis

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?
Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Complex Action Problem

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Complex Action Problem

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?

Complex Action Problem

Discrete Langevin dynamics Relativistic Bose gas and simulations on a lattice **Summary**

Outlook

- As long as stochastic quantization gives promising results
 - a search for other models and in particular QCD are in order
 - but not only Standard Model physics can be studied
 - there are various Beyond the Standard Model physics with complex action to be tested (simulations)
 - the method is applicable to general systems with a complex action!
- Gert Aarts et. al. are onto working S. M. stochastic quantization
 - technicalities arise when starting to work with gauge symmetries
- What about (non-perturbative) renormalization?
- and other QFT and beyond aspects/problems to be adjusted to stochastic quantization?