
J
H
E
P
0
7
(
2
0
0
0
)
0
1
3

Received: April 3,2000, Accepted: July 7,2000
HYPER VERSION

Large-N dynamics of dimensionally reduced

4D SU(N) super Yang-Mills theory

Jan Ambjørn and Jun Nishimura∗

Niels Bohr Institute, Copenhagen University

Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

E-mail: ambjorn@nbi.dk, nisimura@nbi.dk

Konstantinos N. Anagnostopoulos

Department of Physics, University of Crete

P.O. Box 2208, GR-71003 Heraklion, Greece

E-mail: konstant@kiritsis.physics.uoc.gr

Wolfgang Bietenholz

NORDITA Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

E-mail: bietenho@nordita.dk

Tomohiro Hotta
Institute of Physics, University of Tokyo

Komaba, Meguro-ku, Tokyo 153-8902, Japan

E-mail: hotta@hep1.c.u-tokyo.ac.jp

Abstract:We perform Monte Carlo simulations of a supersymmetric matrix model,

which is obtained by dimensional reduction of 4D SU(N) super Yang-Mills theory.

The model can be considered as a four-dimensional counterpart of the IIB matrix

model. We extract the space-time structure represented by the eigenvalues of bosonic

matrices. In particular we compare the large-N behavior of the space-time extent

with the result obtained from a low-energy effective theory. We measure various Wil-

son loop correlators which represent string amplitudes and we observe a non-trivial
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nary gauge theory does hold at least within a finite range of scale. Comparison with

the results for the bosonic case clarifies the rôle of supersymmetry in the large-N dy-

namics. It does affect the multi-point correlators qualitatively, but the Eguchi-Kawai

equivalence is observed even in the bosonic case.
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1. Introduction

A recent excitement in string theory is that we finally arrive at concrete proposals

for non-perturbative definitions of superstring theory [1]–[4]. In particular, Matrix

Theory [1] and the IIB matrix model [2], which are candidates for a non-perturbative

definition of M-theory and type-IIB superstring theory, respectively, have attracted

considerable interest (for reviews, see refs. [5, 6]). The proposed formulations take

the form of large-N reduced models [7], which can be obtained by dimensional re-

duction of large-N gauge theories; a reduction to one dimension for M-theory, and to

zero dimension (one point) for type-IIB superstring theory. These proposals are sup-

ported by some evidences such as the similarity of the hamiltonian (or the action)

to that of membranes or strings, the appearance of soliton-type objects known as

D-branes with consistent interactions, and the consistency with string dualities upon

compactification. For the IIB matrix model, even an attempt to establish a direct
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connection to perturbative string theory has been made by deriving the light-cone

string field hamiltonian from loop equations of the model [8]. This attempt was

indeed successful, albeit with the aid of symmetry and power-counting arguments.

Further variants of that model have been proposed in refs. [9].

As another approach to analyze these proposals we can investigate the dynamical

properties of large-N reduced models of this kind, and verify if they really have the

potential to describe non-perturbative string theory. In ref. [10] a two-dimensional

reduced model with unitary matrices has been studied in this context. There, a

large-N limit, which differs from the planar limit (or ’t Hooft limit), has been dis-

covered numerically.1 A hermitean matrix model obtained by simply omitting the

fermions in the IIB matrix model, and its generalizations to arbitrary dimensions

larger than two, have been studied in refs. [12, 13]. In ref. [13], Monte Carlo simula-

tions up to N = 256 have been reported and analytical methods such as perturbation

theory, Schwinger-Dyson equations and 1/D expansions have been applied, provid-

ing a comprehensive understanding of the large-N dynamics of that model. A new

type of Monte Carlo technique was used to extract the value of the partition func-

tion [14, 12]. This technique has been further applied to extract the asymptotic

behavior of the eigenvalue distribution for large eigenvalues [15, 16].

In the present paper, we make a first attempt to extract the large-N dynamics

of a supersymmetric large-N reduced model obtained by dimensional reduction of

4D supersymmetric Yang-Mills theory. The model can be regarded as a 4D coun-

terpart of the IIB matrix model. The bosonic model is well understood [12, 13],

but the inclusion of fermions makes the system far more complicated. An attempt

to study the model analytically maps it onto a soluble system [17], but the rele-

vance to the original model is unclear due to a non-trivial change of variables in

an analytic continuation. Here we take a direct approach, based on Monte Carlo

simulations. Fermions are completely included by the use of the so-called Hybrid-

R algorithm [18], which is one of the standard methods in QCD simulations with

dynamical quarks.

One of the features that makes the IIB matrix model most attractive as a non-

perturbative definition of string theory is that space-time is dynamically generated

as the eigenvalue distribution of the bosonic matrices [2, 19, 20]. In ref. [19] a low-

energy effective theory of the model is constructed, where the authors discuss some

possible mechanisms that may induce a collapse of the eigenvalue distribution to

a four-dimensional manifold. We extract the large-N behavior of the space-time

extent in our model and compare the result with the prediction obtained by the

low-energy effective theory. Another dynamical issue to be addressed in this context

is the space-time uncertainty relation, which was proposed as a principle for con-

1This non-planar large-N limit has recently been re-interpreted as a continuum limit of non-

commutative gauge theory [11].
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structing non-perturbative string theory [21]. We extract the large-N behavior of

the space-time uncertainty of our model and confirm that the model indeed satisfies

the proposed principle.

Another attractive feature of the IIB matrix model as a non-perturbative defini-

tion of string theory is that its only parameter g is a simple scale parameter.2 One

has to tune g suitably as one sends N to infinity, so that the correlation functions

have finite large-N limits. According to ref. [8], Wilson loop operators can be in-

terpreted as the string creation and annihilation operators, and it was found that

g2N should be fixed in order to obtain the light-cone string field hamiltonian in the

large-N limit. It is a non-trivial test of the model to verify if the correlation functions

of Wilson loops really have a universal large-N scaling. We address this issue in the

present model and show that there is indeed a universal large-N scaling at fixed g2N .

We also address yet another important dynamical issue in this model, namely the

question of equivalence to ordinary super Yang-Mills theory in the sense of Eguchi

and Kawai [7], which is exactly the way large-N reduced models first appeared in

history. The crucial observation is that large-N gauge theory does not depend on the

volume (under some assumptions), which inspired Eguchi and Kawai to propose the

zero-volume limit of large-N gauge theory as a model equivalent to the gauge theories

in an infinite volume [7]. One of the assumptions is that the (ZN)
D symmetry of the

model is not spontaneously broken, where D is the space-time dimension. However,

in the purely bosonic case in D > 2, the symmetry is spontaneously broken at

weak coupling [22], thus preventing one from taking a continuum limit. This led to

modifications of the model [22]–[26] so that the (ZN)
D symmetry is not spontaneously

broken while keeping the equivalence valid. In the supersymmetric case, the effective

action which induces the spontaneous symmetry breaking of the (ZN )
D symmetry is

naively cancelled by the contributions of fermions. Indeed, in the scalar field case,

it has been shown that the reduced model is equivalent to the field theory without

such modifications [27]. We observe in the present supersymmetric model that the

Eguchi-Kawai equivalence indeed holds at least in a finite range of scale. What is

rather remarkable is that actually this is true also for the bosonic case, which is

contrary to what has been expected.

In section 2 we describe the model we are going to investigate. In section 3 we

study the space-time structure of the model. In section 4 we present our results

for correlation functions of Wilson loop and Polyakov line operators, and we discuss

the Eguchi-Kawai equivalence as well as the universal scaling behavior. Section 5 is

devoted to a summary and discussion. In appendix A we comment on the algorithm

we used for the simulation. In appendix B we present the corresponding results for

the bosonic case for comparison.

2This means in particular that the string coupling constant, which is related to the vacuum

expectation value of the dilaton field, is not a tunable parameter. We come back to this point in

section 4.3.
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2. The model

The model we investigate is a supersymmetric matrix model obtained by dimensional

reduction of 4D SU(N) super Yang-Mills theory. The partition function is given by

Z =

∫
dAe−Sb

∫
dψdψ̄e−Sf , Sb = − 1

4g2
tr[Aµ, Aν ]

2 ,

Sf = − 1
g2
tr
(
ψ̄α(Γ

µ)αβ[Aµ, ψβ]
)
, (2.1)

where Aµ (µ = 1, . . . , 4) are tracelessN×N hermitean matrices, and ψα, ψ̄α (α = 1, 2)
are traceless N ×N complex matrices. The measure is defined as

dψdψ̄ =

2∏
α=1

[
N∏
i,j=1

[
d(ψα)ijd(ψ̄α)ij

]
δ

(
N∑
i=1

(ψα)ii

)
δ

(
N∑
i=1

(ψ̄α)ii

)]
, (2.2)

dA =

4∏
µ=1

[∏
i<j

{dRe(Aµ)ijd Im(Aµ)ij}
N∏
i=1

{d(Aµ)ii}δ
(
N∑
i=1

(Aµ)ii

)]
. (2.3)

This model is invariant under 4D Lorentz transformations,3 where Aµ transforms as

a vector and ψα as a Weyl spinor. Γµ are 2 × 2 matrices acting on the spinor indices,
and they can be given explicitly as

Γ1 = iσ1 , Γ2 = iσ2 , Γ3 = iσ3 , Γ4 = 1 . (2.4)

The model is manifestly supersymmetric, and it also has a SU(N) symmetry

Aµ −→ V AµV
† ; ψα −→ V ψαV

† ; ψ̄α −→ V ψ̄αV
† , (2.5)

where V ∈ SU(N). All these symmetries are inherited from the super Yang-Mills the-
ory before dimensional reduction. The model can be regarded as the four-dimensional

counterpart of the IIB matrix model [2].

In contrast to unitary matrix models, where the integration domain for the parti-

tion function is compact, the first non-trivial question to be addressed in hermitean

matrix models in general, is whether the model is well defined as it stands. The

problem can be most clearly understood by decomposing the hermitean matrices

into eigenvalues and angular variables, where a potential danger of divergence exists

in the integration over the eigenvalues, even at finite N . This issue has been ad-

dressed numerically for the supersymmetric case [14] at N = 3 as well as the bosonic

case [12] up to N = 6. Exact results are available for N = 2 [28]. There is also a

perturbative argument which is valid when all the eigenvalues are well separated from

3When one defines the IIB matrix model non-perturbatively, a Wick rotation to euclidean signa-

ture is needed. This is also the case for the present model. Hence by Lorentz invariance we actually

mean rotational invariance.
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each other [13, 19]. This reasoning agrees with the conclusions obtained for small

N [12, 14, 28]. In particular, supersymmetric models in D = 4, 6, 10 are expected to

be well defined for arbitrary N . Our simulations confirm that this is indeed the case

for D = 4.

Since the model is well defined without any cutoff, the parameter g, which is the

only parameter of the model, can be absorbed by rescaling the variables,

Aµ = g1/2Xµ , (2.6)

ψα = g3/4Ψα . (2.7)

Therefore, g is a scale parameter rather than a coupling constant, i.e. the g depen-

dence of physical quantities is completely determined on dimensional grounds. The

parameter g should be tuned appropriately as one sends N to infinity, so that each

correlation function of Wilson loops has a finite large-N limit. Whether such a limit

really exists or not is one of the dynamical issues we address in this work.

We now discuss the Eguchi-Kawai equivalence [7], which is the equivalence be-

tween reduced models and the corresponding gauge theories in the large-N limit. In

its proof based on the Schwinger-Dyson equation, one has to assume quantities of

the type 〈
tr(eikµAµ) tr(e−ikµAµ)

〉
(kµ 6= 0) (2.8)

to vanish. Assuming in addition large-N factorization, the vanishing of (2.8) is equiv-

alent to 〈tr(eikµAµ)〉 = 0, which is guaranteed if the eigenvalues of Aµ are uniformly
distributed on the whole real axis in the large-N limit. The fact that the present

model is well defined without any cutoff implies that the eigenvalue distribution of

Aµ is not uniform, but it has a finite extent for finite N . Hence, the Eguchi-Kawai

equivalence is quite non-trivial even in the supersymmetric case. Here the situation

is more subtle than in the case of the unitary matrix model version of a large-N

reduced model [7]. There, the model has the (ZN )
D symmetry Uµ → e2πimµ/NUµ

(mµ = 0, 1, . . . , N − 1), hence quantities like 〈tr(Uµ)n〉 vanish, unless the symmetry
is spontaneously broken.

One might be tempted to consider a model defined by the partition function (2.1)

but without imposing the traceless condition on Aµ. We denote such a model as the

U(N) model, to be distinguished from the original model, which we call the SU(N)

model. The U(N) model has the U(1)4 symmetry

Aµ −→ Aµ + αµ1N , (2.9)

where αµ is a real vector. Note, however, that the trace part of Aµ in the U(N) model

simply decouples because Aµ appears in the action only through commutators. The

transformation (2.9) acts on the decoupled trace part and hence it cannot play any

physical rôle. Indeed the quantity (2.8) calculated with the U(N) model or with the

SU(N) model is exactly the same. Thus, considering the U(N) model does not help.
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Next we comment on the method we use to study the model. Details can be

found in appendix A. The integration over fermionic variables can be done explicitly

and the result is given by detM,M being a 2(N2− 1) × 2(N2− 1) complex matrix
which depends on Aµ. Hence the system we want to simulate can be written in terms

of bosonic variables as

Z =

∫
dA e−Sb detM . (2.10)

A crucial point for the present work is that the determinant detM is actually

real positive, as we prove in appendix A. Due to this property, we can introduce

a 2(N2 − 1) × 2(N2 − 1) hermitean positive matrix D =M†M, so that detM =√
detD, and the effective action of the system takes the form

Seff = Sb − 1
2
ln detD . (2.11)

We apply the Hybrid R algorithm [18] to simulate this system. In the framework

of this algorithm, each update of a configuration is made by solving a hamiltonian

equation for a fixed “time” τ . The algorithm is plagued by a systematic error due to

the discretization of τ that we used to solve the equation numerically. We performed

simulations at three different values of the time step ∆τ . Except in figure 2, we find

that the results do not depend much on ∆τ (below a certain threshold), so we just

present the results for the value ∆τ = 0.002, which appears to be sufficiently small.

We also note that there is an exact result

〈trF 2〉 = −
〈
tr

(∑
µ6=ν
[Aµ, Aν ]

2

)〉
= 6g2(N2 − 1) , (2.12)

which can be obtained by a scaling argument, similar to the one used for the bosonic

case [13]. We used this exact result to check the code and the numerical accuracy.

3. The space-time structure

We first study the space-time structure of the reduced model. In the IIB matrix

model, the eigenvalues of the bosonic matrices Aµ are interpreted as the space-time

coordinates [2, 6, 19, 20]. However, since the matrices Aµ are not simultaneously

diagonizable in general, the space-time is not classical. In order to extract the space-

time structure, we first define the space-time uncertainty ∆ by

∆2 =
1

N
tr(A 2

µ )− max
U∈SU(N)

1

N

∑
i

{(UAµU †)ii}2 , (3.1)

which is invariant under Lorentz transformation and SU(N) transformation (2.5) [13].

This formula has been derived in ref. [13] based on analogy to quantum mechanics,

regarding Aµ as an operator acting on a space of states. It has the natural property

6
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that ∆2 vanishes if and only if the matrices Aµ are diagonalizable simultaneously.

For each configuration Aµ generated by a Monte Carlo simulation, we maximize∑
i{(UAµU †)ii}2 with respect to the SU(N) matrix U . We denote the matrix which

yields the maximum as Umax, and we define xµi = (UmaxAµU
†
max)ii as the space-time

coordinates of N points (i = 1, . . . , N) in four-dimensional space-time.

Note that xµi should be identified with the dynamical variables denoted by the

same xµi in ref. [19]. There, the bosonic matrices Aµ and the fermionic matrices ψα
are decomposed into diagonal and off-diagonal elements as

(Aµ)ij = xµiδij + aµij (aµii = 0) ,

(ψα)ij = ξαiδij + ϕαij (ϕαii = 0) . (3.2)

The off-diagonal parts aµij and ϕαij are integrated out using the “Lorentz gauge” in

the one-loop approximation, which is valid when the points xµi (i = 1, . . . , N) are

well separated from each other. Thus one obtains the effective action for xµi and

ξαi, which can be considered as a low-energy effective action of the supersymmetric

large-N reduced model. In order to get the effective action only for xµi, one still

has to integrate over ξαi, which cannot be done exactly for D = 6 and D = 10

(IIB matrix model). In D = 4, however, the integration over ξαi can be carried out

exactly and the system of xµi is described by a simple branched polymer with an

attractive potential between the points connected by a bond. In D = 6 and D = 10,

the system of xµi is expected to be described by some complicated branched-polymer

like structure. Thus, although the one-loop approximation might seem quite drastic,

the low-energy effective theory of xµi still has a non-trivial dynamics. In ref. [19],

some plausible mechanisms for the collapse of the xµi distribution in IIB matrix model

have been discussed. What we have described in the previous paragraph provides

a way to extract the low-energy effective theory of xµi from the full model without

perturbative expansions. In particular, we can check explicitly whether the one-loop

approximation adopted in ref. [19] really captures the low-energy dynamics of the

supersymmetric large-N reduced model.

We first look at the distribution ρ(r) of the distances r, where the distance

between two arbitrary points xi 6= xj is measured by
√
(xi − xj)2. In figure 1 we

plot the results for N = 16, 24, 32 and 48. We first note that the distribution at

small r falls off rapidly below r/
√
g ∼ 1.5, independently of N . (This behavior is also

seen in the bosonic case shown in figure 10.) This observation is in agreement with

the argument in ref. [19] that the ultraviolet behavior of the space-time structure

of the model is controlled by the SU(2) matrix model. There, this argument has

been used to justify the introduction of a N -independent ultraviolet cutoff in the

low-energy effective theory, which otherwise suffers from ultraviolet divergence due

to coinciding xµi’s. Our observation confirms that the ultraviolet cutoff is indeed

generated dynamically if one treats the full model non-perturbatively instead of

making perturbative expansions around diagonal matrices.
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Figure 1: The distribution of distances ρ(r), plotted against r/
√
g for N = 16, 24, 32

and 48.

In both, the supersymmetric as well as the bosonic case, we observe that the

distribution shifts towards larger r as one increases N . In order to quantify this

behavior, we define the extent of space-time by

Rnew =
2

N(N − 1)

〈∑
i<j

√
(xi − xj)2

〉
=

∫ ∞
0

dr rρ(r) . (3.3)

We denote this quantity by Rnew in order to distinguish it from the definition of the

extent of the space-time R =
√
〈 1
N
tr(A 2

µ )〉 used in ref. [13]. R, which roughly cor-
responds to

√
〈∫∞
0
dr r2ρ(r)〉, is logarithmically divergent in the 4D supersymmetric

case due to the asymptotic behavior ρ(r) ∼ r−3 at large r [15]. On the other hand,
Rnew does not suffer from this divergence as eq. (3.3) shows. In figure 2 we plot the

results for the space-time extent Rnew as well as those for the space-time uncertainty√〈∆2〉 for N = 16, 24, 32 and 48. We repeat the same measurements for the bosonic
model with N up to 256 and include the results in figure 2 for comparison. We

see that the effect of fermions enhances Rnew and suppresses
√〈∆2〉 considerably.

However, the power of the large-N behavior does not seem to be affected.

Let us discuss the results for Rnew. In the bosonic case, the data can be nicely

fitted to a power behavior with Rnew/
√
g = 1.56(1) ·N1/4. As expected, the observed

large-N behavior of Rnew is the same as the one obtained for R in ref. [13]. In the

supersymmetric case, the large-N behavior of Rnew can be predicted by the branched

8
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1
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N

R     (SUSY)
new

R     (boson)
new

(boson)
∆

(SUSY)
∆

Figure 2: Rnew/
√
g and

√〈∆2〉/g, plotted against N . The results for the bosonic model
are also included. The lines are fits to the power behavior ∝ N1/4, which is predicted
theoretically. (In the labels we use a short-hand notation.)

polymer picture based on the one-loop approximation [19]. Since the Hausdorff

dimension of branched polymers is four, dH = 4, the number of points N grows as

the extent Rnew of the branched polymer, N ∼ (Rnew/`)dH . Here ` is the minimum
length of the bond, which is of O(

√
g) as we have already discussed. Thus one obtains

Rnew ∼ √g N1/4. The data in figure 2 seem to be consistent with this prediction.
Fitting the data to this power behavior, we obtain Rnew/

√
g = 3.30(1) ·N1/4.

One might be surprised that supersymmetry does not affect the power of the

large-N behavior of the space-time extent Rnew. We recall, however, that in the

bosonic case the explanation is completely different — although the power is the

same [13]. There the one-loop perturbative expansion around diagonal matrices

yields a logarithmic attractive potential between all the pairs of eigenvalues. The one-

loop effective potential is dominant as far as the extent of the eigenvalue distribution

is larger than
√
g N1/4. One can therefore put an upper bound on the space-time

extent R . √g N1/4. What happens actually is that this upper bound is saturated.
The behavior R ∼ √g N1/4 can also be shown to all orders in the 1/D expansion [13].
Let us turn to the results for the space-time uncertainty. Using the one-loop

perturbative expansion, 〈∆2〉 can be roughly estimated as

〈∆2〉 = 1
N

∑
ij

〈aµijaµji〉 = 1
N

∑
ij

〈
g2

(xi − xj)2
〉
∼ g2N

R2new
. (3.4)

The powers of Rnew and
√〈∆2〉, as well as the coefficients we observe, are in
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qualitative agreement with this estimation. The bosonic case has been studied be-

fore in ref. [13]. The data in figure 2 can be nicely fitted to a power behavior

with
√〈∆2〉/g = 0.907(3) · N1/4. Thus, in the bosonic case we obtain √〈∆2〉 ∼

0.58Rnew [13], which indicates a significant deviation from the classical space-time

picture. On the other hand, in the supersymmetric case we obtain
√〈∆2〉/g =

0.730(2) · N1/4, hence our result amounts to √〈∆2〉 ∼ 0.22Rnew, coming closer to
the classical space-time picture.

We will see in the next section that the scale parameter g should be taken to be

O(1/
√
N) in order to obtain a universal scaling behavior for the Wilson loop correla-

tors. This means that the space-time uncertainty in the physical scale remains finite,

rather than vanishing, in the large-N limit. Therefore the present model satisfies the

space-time uncertainty principle proposed for non-perturbative definitions of string

theories [21].

4. Wilson loop correlation functions

In the interpretation of a large-N reduced model as a string theory, Wilson loop

operators correspond to string creation operators [8]. Therefore, the existence of

a non-trivial large-N limit of the Wilson loop correlators is an absolutely crucial

issue. It has been addressed before in the 2D Eguchi-Kawai model, where non-trivial

large-N scaling has indeed been observed [10].

We define the “Wilson loop” and the “Polyakov line” operators as

W (k) =
1

N
tr
(
eikX1eikX2e−ikX1e−ikX2

)
, P (k) =

1

N
tr
(
eikX1

)
, (4.1)

where Xµ are dimensionless matrices defined in eq. (2.6). For convenience we have

chosen particular components of Xµ in the above definitions, but the choice of the

directions becomes irrelevant when taking the vacuum expectation value, due to

Lorentz symmetry and parity invariance. In the actual calculations we take an av-

erage over all possible choices of the components in order to enhance the statis-

tics.

The real parameter k represents the dimensionless “momentum” that character-

izes the momentum density distributed along the string. The physical (dimensionful)

momentum variable is given by kphys = k/
√
g. We have to tune g depending on N ,

so that the correlation functions of the above operators have definite large-N limits

as functions of kphys. In the following, we always set g = 1 for N = 48 without loss

of generality.

In all plots except for figure 4, we further assume g to be proportional to 1/
√
N .

This turns out to be consistent with large-N scaling, hence g ∝ 1/√N can be
regarded as one of our observations.
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Figure 3: The Wilson 1-point function 〈W 〉, plotted against kphys = k/√g.
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Figure 4: The Wilson 1-point function 〈W 〉 is plotted now logarithmically against k2/g,
in order to visualize the extent of the area law behavior. The scale parameter g has been

tuned as described in the text.

4.1 One-point function and Eguchi-Kawai equivalence

In this subsection we discuss the one-point functions, and we start with the Wilson

loop 〈W (k)〉. Also ref. [16] presents some recent results about this quantity.

11
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Figure 5: The Polyakov 1-point function 〈P 〉, plotted against k/√g.

In the small k regime it can be expanded as

〈W (k)〉 = 1 + 1

2N
k4〈tr([X1, X2]2)〉+O(k6) = 1− 1

4
k4
(
N − 1

N

)
+O(k6) , (4.2)

where we have used the exact result (2.12). Therefore, in order to make the small

k regime scale, we have to take g ∝ 1/√N , as we mentioned above. In figure 3
we plot 〈W (k)〉 against k/√g. The small k region scales as it should, and the
results agree with the analytical prediction (4.2). Moreover the scaling extends up

to k/
√
g = O(1).

If the model is equivalent to ordinary gauge theory — namely to 4D pure super

Yang-Mills theory with four supercharges — which is confining, then the Wilson

loop should exhibit an area law behavior. In order to illustrate this behavior, we

show a logarithmic plot of 〈W (k)〉 versus the area k2/g in figure 4. In this figure
only, we fine-tune g as a function of N so that the scaling in the intermediate regime

of k becomes even better. We stay with the convention g(48) = 1 and use the

optimal values g(32) = 1.291, g(24) = 1.563, g(16) = 1.929, which is not far from

g ∝ 1/√N . The small deviation can be understood as a manifestation of finite-N
effects. Figure 4 shows indeed a region of k that corresponds to the area law behavior

〈W (k)〉 ∼ exp(−const.k2). Surprisingly, the area law behavior is also observed in
the bosonic model, as figure 12 shows, which is quite contrary to what one might

have expected [13, 16]. In both cases, supersymmetric and bosonic, it is not clear

from the data whether the area law extends to k =∞ in the large-N limit. We will
discuss the observed area law behavior from a theoretical point of view later.
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We now proceed to the one-point function of the Polyakov line. In the 2D

Eguchi-Kawai model [10] this quantity vanishes due to (ZN)
D symmetry. In the

present model, however, there is no exact symmetry that could make such a quantity

vanish, as we explained in section 2. Note for instance that P (k = 0) = 1 for

any configuration. Figure 5 shows the results for 〈P (k)〉. It falls off rapidly as k
increases.4 Again we observe a good scaling with g ∝ 1/√N . Remember also that
〈P (k)〉 is actually just a Fourier transform of the eigenvalue distribution. Therefore,
the value of k at which 〈P (k)〉 drops to zero, which we denote as k0, should be
inversely proportional to the space-time extent Rnew. The observed scaling with

g ∝ 1/√N is consistent with our result in the previous section, Rnew ∼ √g N1/4.
The result for the bosonic case is shown in figure 13. We obtain a similar behavior

except for some oscillations in the large-k region. In particular, scaling is confirmed

with g ∝ 1/√N . The value of k0 is larger than the supersymmetric k0, as expected.
The ratio of k0 in the two cases is indeed roughly the inverse of the corresponding

ratio of Rnew (the bosonic k0 is about twice as large as the supersymmetric one).

The above observations concerning 〈P (k)〉 and Rnew have an interesting impli-
cation on the Eguchi-Kawai equivalence. We recall that from the results for 〈W (k)〉,
we phenomenologically concluded that the Eguchi-Kawai equivalence holds at least

in a finite range of scale for both, the supersymmetric and the bosonic case. We

would like to understand this from a theoretical point of view. As we mentioned in

section 2, in the proof of Eguchi-Kawai equivalence, 〈P (k)〉 is assumed to vanish.
We have found that 〈P (k)〉 is indeed small for k > k0, but not for k < k0. This

means that the proof works for k > k0, but not for small k, which corresponds to

the ultraviolet regime in the corresponding gauge theory. We also observed that k0
remains finite with respect to a physical scale in the large-N limit. A complemen-

tary understanding can be obtained by taking Gross-Kitazawa’s point of view [24].

As explained in ref. [13], the extent of the eigenvalue distribution of Aµ determines

the momentum cutoff of the corresponding gauge theory [24]. The observation in

section 3 that Rnew ∼ √g N1/4 implies that the momentum cutoff remains finite in
physical scale as N → ∞. Let us assume that the momentum cutoff is finite, but
large enough to attract the renormalization flow to the fixed point which corresponds

to the universality class of gauge theory. Then the flow follows closely the renormal-

ization trajectory of the gauge theory, in a certain regime. That would explain why

the equivalence holds at least in a finite range of scale. However, since the momen-

tum cutoff does not go to infinity in the large-N limit, it is conceivable that the

renormalization flow will leave the renormalization trajectory of the gauge theory

at some low-energy scale eventually. In this case the observed area law would not

extend to k =∞ even in the large-N limit.
4One may consider the small k expansion here, as in eq. (4.2). The result is 〈P (k)〉 = 1 −

1
2N k

2〈tr(X 2
1 )〉+ · · ·. The fact that 〈tr(A 2µ )〉 is logarithmically divergent means that actually 〈P (k)〉

has a non-analytic behavior ∼ 1 + const. k2 ln |k| around k = 0.
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4.2 Multi-point functions and universal scaling

In this subsection we proceed to the large-N scaling of multi-point functions of Wilson

loops. We first note that in the bosonic case, there are analytical results to all order

in the 1/D expansion [13]. The statement is that

〈O1O2 · · ·On〉con ∼ O

(
1

N2(n−1)

)
for the bosonic case , (4.3)

where Oi denotes a Wilson loop or a Polyakov line as defined in eq. (4.1), and 〈· · ·〉con
means that only the connected part is taken. The correlation functions should be

considered as functions of kphys = k/
√
g, where g is taken to be proportional to

1/
√
N . Our results for the bosonic model shown in figures 11 to 17 clearly confirm

this analytical prediction. Let us consider a wave-function renormalization for each

operator, O(ren)i = ZOi, so that connected correlation functions of the renormalized
operators O(ren)i become finite in the large-N limit. Relation (4.3) means, however,

that we cannot make all the multi-point functions finite. If we make the two-point

functions finite by choosing Z ∼ O(N), then all the higher-point functions vanish in
the large-N limit. In the supersymmetric case, we will see that scaling is observed

again with g ∝ 1/√N , but in contrast to the bosonic case a universal Z that makes all
the correlators finite seems to exist. In the following, we always set Z(N = 48) = 1,

without loss of generality.

Let us start with the two-point functions, for which we measure the following

two correlation functions,

G
(W )
2 (k) = 〈{ImW (k)}2〉 , G

(P )
2 (k) = 〈{ImP (k)}2〉 . (4.4)

We take the imaginary part in order to avoid subtraction of a disconnected part.5

(Note in this regard that since ImW (k) and ImP (k) are parity odd, the one-point

functions 〈ImW (k)〉 and 〈ImP (k)〉 vanish due to parity invariance of the model.)
The results are shown in figures 6 and 7, respectively. If we multiply the data by

(N/48)2, they scale nicely with g ∝ 1/√N .
As a three-point function, we measure

G
(W )
3 (k) = 〈(ImW (k))2ReW (k)〉 − 〈(ImW (k))2〉〈ReW (k)〉 . (4.5)

We multiply the data either by (N/48)3, which is required for the universal scaling of

all the multi-point correlation functions, or by (N/48)4, which is the factor predicted

for the bosonic model. The results are compared in figure 8. We do observe a nice

scaling behavior with a factor of (N/48)3, but the scaling becomes worse for a factor

of (N/48)4.

5We also measured a number of multi-point functions, which are not presented here since the

relative errors are rather large.
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Figure 6: The Wilson 2-point function G
(W )
2 , multiplied by Z2 ∝ N2, plotted against

k/
√
g.
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Figure 7: The Polyakov 2-point function G
(P )
2 , multiplied by Z

2 ∝ N2, plotted against
k/
√
g.

Similarly, as a four-point function we measure

G
(W )
4 (k) = 〈(ImW (k))4〉 − 3〈(ImW (k))2〉 . (4.6)

We multiply the data either by (N/48)4, which is required for the universal scaling of
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Figure 8: The Wilson 3-point function G
(W )
3 , multiplied by Z3 ∝ N3, plotted against

k/
√
g on the left. On the right we show the corresponding plot using the bosonic prediction

Z3 ∝ N4 instead, which leads to an inferior level of scaling.
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Figure 9: The Wilson 4-point function G
(W )
4 , multiplied by Z4 ∝ N4, plotted against

k/
√
g on the left. On the right we show the corresponding plot using the bosonic prediction

Z4 ∝ N6 instead, which leads to an inferior level of scaling.

all the multi-point correlation functions, or by (N/48)6, which is the factor predicted

for the bosonic model. The results are compared in figure 9. Again the scaling

behavior obtained with the factor for universal scaling is superior over the behavior

with the bosonic factor.

To summarize our results concerning Wilson loop correlators, we observe that

〈O〉 ∼ O(1) , 〈O1O2 · · ·On〉con ∼ O

(
1

Nn

)
for n ≥ 2 . (4.7)

These correlators scale as functions of kphys = k/
√
g, where g is taken to be propor-

tional to 1/
√
N . This means that all the multi-point functions of the renormalized

operators O(ren)i = ZOi become finite in the large-N limit if we set Z ∼ O(N), in
contrast to the bosonic case. We will discuss further the implications of this universal

scaling behavior in the next subsection.
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Finally we comment on large the N factorization. In ordinary gauge theory,

large-N factorization can be shown by weak-coupling expansion as well as strong-

coupling expansion. In a large-N reduced model with hermitean matrices, one cannot

do a weak-coupling or a strong-coupling expansion, because g is not a coupling

constant but a scale parameter, as we have mentioned. Hence large-N factorization

is non-trivial. In the bosonic case, large-N factorization holds to all orders of the

1/D expansion [13]. Our observation (4.7) implies

〈O1O2 · · ·On〉 = 〈O1〉〈O2〉 · · · 〈On〉+O
(
1

N2

)
, (4.8)

where the O (1/N2) contributions are due to 〈O1O2〉con〈O3〉 · · · 〈On〉, etc. Therefore
the large-N factorization is also valid in the supersymmetric case.

4.3 Interpretation of the large-N scaling

In this subsection, we discuss the physical meaning of the large-N scaling (4.7)

we observed.

If one views large-N reduced models as a non-perturbative definition of string

theory by identifying Wilson loops as creation and annihilation operators of fun-

damental strings, string unitarity requires a large-N behavior of the form Naχn for

the connected correlators of n Wilson loops, where χn = 2− n is the Euler charac-
teristic of the worldsheet. In order to compare this behavior to our results for the

supersymmetric case (4.7) as well as for the bosonic case (4.3), we first drop the

extra factor 1/Nn in (4.3) and (4.7), which is due to the normalization (4.1) of the

operators Oi. Then we find that the connected correlators of Wilson loops change
from an O(Nχn) behavior to an O(1) behavior by the introduction of supersymmetry.

Our results for the supersymmetric case indicate a = 0, which implies that one is

far away from the perturbative regime in genus. From the string theoretical point

of view this indicates that the supersymmetric large-N reduced model might auto-

matically realize a kind of “double-scaling limit” [29], which played a crucial rôle

in a non-perturbative formulation of non-critical bosonic string theory using matrix

models. While we do not presently have an analytic understanding of the observed

large-N behavior for the supersymmetric case, we give a possible diagrammatic ex-

planation and discuss how the double-scaling limit can be realized. Our argument

also suggests that smooth worldsheet configurations dominate in the diagrammatic

representation of the multi-point correlation functions in the supersymmetric case,

but not in the bosonic case.

We estimate n-point correlation functions of Wilson loops using the perturbative

expansion (3.2), along the lines of refs. [19, 13]. Again we drop the factor 1/N in the

operators Oi in (4.1). Let us start with the bosonic case. By integrating out the off-
diagonal elements perturbatively, we obtain Feynman diagrams, where the diagonal
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elements xi are assigned to every index loop. Each diagram can be evaluated using

the Feynman rules and the result can be written schematically as

F =
∑
i1,...,iF

(
g2

(xi − xj)2
)L(

(xk − xl) 1
g2

)V3 ( 1
g2

)V4
, (4.9)

where F , L, V3, V4 are the number of index loops (faces), propagators (links), 3-point

and 4-point vertices, respectively. They obey the relations

F + V − L = χ , 4V4 + 3V3 = 2L , V = V3 + V4 . (4.10)

Here χ is the Euler characteristic of the diagram given as χ = 2− 2h−n, where h is
the genus (the number of handles in the diagram) and n is the number of the Wilson

loops, which form the boundaries of the diagram. Next we have to take an ensemble

average of (4.9) over the distributions {xi} obtained from the configurations. Given
a configuration in the ensemble, quantities such as (xi − xj) in (4.9) are generically
of the order of the extent of the xi-distribution, which is given by R ∼ √g N1/4 as
we discussed in section 3. Considering such contributions only, we can estimate the

sum (4.9) as

F ∼ NF
(
g2

R2

)L(
R

g2

)V3 ( 1
g2

)V4
∼ Nχ . (4.11)

Thus we can reproduce the large-N behavior of the correlation functions for the

bosonic model. If we view the diagrams as worldsheets and the xi’s as embedding

coordinates of the worldsheet into the target space, the above contributions corre-

spond to a rough worldsheet. Points on the worldsheet which are connected by a

link (as xi and xj in (4.9)) are embedded in the target space quite randomly.
6

In the supersymmetric case, the fermion diagonal elements make the perturba-

tive estimation of the correlation functions much more complicated. However, let us

naively consider the expression (4.9) and take an ensemble average over the distri-

butions of xi. Since the extent of the xi-distribution has the same large-N power

behavior as in the bosonic case, the estimate given in the previous paragraph is

valid also in the supersymmetric case. This explains the observed behavior of the

one-point and two-point functions, but for the three-point functions, the estimate is

O(N) smaller than the observed large-N behavior. As possible contributions that

might explain this observation, let us consider the case when the xi’s, which are con-

nected in a given diagram, are as close to each other as the actual distribution of xi’s

allows. Such contributions correspond to the case when the worldsheet is smooth. In

fact we have seen in figure 1 that there seems to be a minimal length `, which is of

the order
√
g, characterizing the distribution of |xi − xj |. Replacing |xi − xj | with

6The dominance of rough worldsheet configurations in the bosonic case was also suggested in

ref. [13] based on the saturation of the upper bound for R obtained by perturbation theory.
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this minimal length, the summand of (4.9) becomes

(
g2

`2

)L(
`

g2

)V3 ( 1
g2

)V4
∼ O(1) . (4.12)

Let us denote by nN the number of such terms appearing in the sum over the indices

i1, . . . , iF in (4.9). Then we can estimate this kind of contribution to (4.9) as

F ∼ 〈nN〉 ·O(1) , (4.13)

where 〈nN〉 is the average of nN over the configurations of xi. In the bosonic case,
the result (4.3) requires 〈nN 〉 to be smaller than any negative power of N . Namely
the probability that a term such as (4.12) appears in the sum (4.9) should decrease

rapidly as N increases. In the supersymmetric case, on the other hand, the ob-

served large-N behavior of the three-point functions can be explained by the con-

tributions (4.13) assuming that 〈nN〉 is of O(1). Note also that for the one-point
and two-point functions, the contributions (4.13) with 〈nN〉 ∼ O(1) is at most the
same order as the contributions (4.11), so that the agreement obtained by consid-

ering only (4.11) is not affected by taking account of the additional contributions

of (4.13). For the 〈nN 〉 to be of O(1), there should be a finite probability that an
arbitrary number of xi’s come close to forming a “network” with the link length of

order O(`). Whether this really occurs or not is itself an interesting dynamical ques-

tion, which can be addressed directly by examining the configurations of xi obtained

as in section 3. We leave this issue for future investigations.

If the above argument is correct, it implies that in the supersymmetric case,

n-point functions for n ≥ 3 are dominated by contributions which correspond to
smooth worldsheets.7 Furthermore, it implies that they are independent of the genus

h, and consequently that diagrams of all topologies contribute in the large-N limit.

This is reminiscent of the double-scaling limit in matrix models [29], which we review

briefly for comparison.

Let us consider a hermitean one-matrix model with the partition function

Z =

∫
dφ e−S ; S = N

(
trφ2 − λ trφ3) , (4.14)

φ being a N × N hermitean matrix. Although the model as it stands is ill-defined
for finite N due to the unbounded action S, the perturbative vacuum φ = 0 becomes

stable in the large-N limit when the coupling constant λ is below a critical value λc.

The n-point correlation function of operators tr φli (i = 1, . . . , n) can be defined as

fn(l1, . . . , ln;λ,N) =
〈
trφl1 · · · trφln〉 , (4.15)

7This is reminiscent of the fact that an increased smoothness of the bosonic part in a supersym-

metric worldsheet has been observed in toy models for superstrings [30].
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where li are integers. A perturbative expansion of this quantity with respect to

the coupling constant λ gives Feynman diagrams, each of which corresponds to a

triangulation of two-dimensional manifold with n boundaries of length li. Thus the

matrix model can be interpreted as a model of non-critical bosonic strings regarding

the two-dimensional manifold as a worldsheet of the strings. Since the power of λ

for each diagram is given by the number of triangles in the triangulated surface, the

coupling constant λ can be interpreted as an exponential of the bare cosmological

constant of the worldsheet. Introducing a “lattice spacing” ε as the link length of

the triangulated surface, the physical (dimensionful) quantities corresponding to the

length of the boundaries and the cosmological constant can be introduced as

l̃i = ε li(ε) , t =
1

ε2
ln

λc

λ(ε)
, (4.16)

where λc is the critical coupling constant defined below (4.14). A continuum limit

ε→ 0 should be taken in such a way that these quantities are fixed.
The contributions to (4.15) from all the diagrams which have h handles are

known to behave asymptotically for ε→ 0 as (see, for example, ref. [31])

fn

(
l̃1

ε
, . . . ,

l̃n

ε
;λce

−tε2 , N

)
∼ (Nε5/2)2−2h−n ε−n . (4.17)

From this expression, one can see that there are two ways to take the large-N limit.

The planar limit corresponds to taking the large-N limit first at fixed ε, followed

by the continuum limit ε → 0. In this limit, only the planar diagrams, which have
h = 0 handles, survive and the n-point correlation functions behave as O(N2−n).
The double-scaling limit, on the other hand, corresponds to taking the large-N limit

and the continuum limit ε → 0 simultaneously, fixing N ε5/2 = g−1str t−5/4. The di-
mensionless parameter gstr can be interpreted as the string coupling constant since

the n-point correlation function becomes proportional to (gstr)
−χ, where χ is again

the Euler characteristic of the diagram. Thus, all the diagrams with different h sur-

vive in this limit. Furthermore, by absorbing the remaining power behavior ε−n into
the renormalization of each operator, we find that the n-point correlation function

behaves as O(1), which means that all the multi-point correlation functions become

finite. Note that string perturbation theory corresponds to a perturbative expan-

sion with respect to the string coupling constant gstr. In the double-scaling limit of

the matrix model, gstr appears as a tunable parameter, which does not have to be

small. Therefore, the double-scaling limit of the matrix model can be regarded as a

non-perturbative formulation of non-critical bosonic string theory.

The scaling behaviors observed in the large-N reduced model for the bosonic

and supersymmetric case formally coincide with the scaling behaviors found in the

planar limit and the double-scaling limit of the matrix model, respectively. We

note, however, that in the large-N reduced model, we do not have the parameter
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corresponding to λ. In this sense, one might say that the double-scaling limit is

taken automatically in the supersymmetric large-N reduced model, and that the

string coupling constant gstr is not a tunable parameter but is fixed dynamically. We

recall that within perturbative string theory, the string coupling constant gstr, which

is related to the vacuum expectation value of the dilaton field, is a moduli parameter

and cannot be fixed dynamically. Our argument suggests the interesting possibility

that the vacuum expectation value of the dilaton field is no longer a moduli parameter

and is fixed dynamically if superstring theory is treated non-perturbatively.8 It is also

intriguing that the qualitative difference of the large-N behavior from the bosonic

case might be related to the dominance of smooth worldsheet configurations.

5. Summary and discussion

In this paper, we have studied the large-N dynamics of a supersymmetric large-N

reduced model by means of Monte Carlo simulations.

We studied the space-time structure represented by the eigenvalues of the bosonic

matrices. In particular, we found that the large-N power behavior of the space-

time extent is consistent with the branched-polymer picture based on the one-loop

perturbative expansion around diagonal matrices. The effect of fermions in the space-

time extent was observed by the enhancement of the coefficient in the power behavior,

but not in the power itself. The power appears to be the same for the bosonic and

supersymmetric case. We emphasized, however, that the theoretical explanation

is completely different. We also found that the space-time uncertainty is clearly

reduced for the supersymmtric case, which means that space-time comes closer to

the classical behavior. Even in the supersymmetric case, the space-time uncertainty

is found to be finite in the physical scale in the large-N limit. We argued that this

implies that the model satisfies the uncertainty principle for the non-perturbative

definition of superstring theory.

The large-N scaling behavior of Wilson loop correlators is observed at fixed g2N .

Although this scaling of g is the same as in the bosonic model, there is a striking

difference from the bosonic case in the wave-function renormalization with the multi-

point functions. In the bosonic case, there was no universal scaling behavior: keeping

two-point functions finite, all the higher-point functions vanish. In the supersym-

metric case, we observed a clear trend for all the higher-point functions to become

finite in the large-N limit. We gave a perturbative argument that this result for the

supersymmetric case might be understood if we assume smooth worldsheets to domi-

nate. This argument also implies that all the topologies of the worldsheet contribute

with equal weight to the amplitude. All these features are reminiscent of the double

scaling limit of matrix models.

8Such a possibility has also been discussed in ref. [19].
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We also addressed the issue of Eguchi-Kawai equivalence. By searching for the

area law behavior in the one-point function of the Wilson loop, we concluded that

the equivalence does hold at least in a finite region of scale. What is rather surprising

is that the area law behavior has been observed also for the bosonic model. This

suggests that the bosonic model is also equivalent to ordinary large-N Yang-Mills

theory at least in a finite region of scale, which is contrary to what has been gen-

erally believed. We argued, however, that this conclusion can be understood from

a more theoretical point of view based on the large-N behavior obtained for Rnew
and the one-point function of the Polyakov line. It is an open question whether this

equivalence extends to the far infrared regime.

To summarize, we have gained new insight into the dynamical properties of the

large-N behavior of a supersymmetric large-N reduced model. We hope that our

findings shed light on the dynamical aspects of the most interesting 10D version of

our model, i.e. the IIB matrix model. In this respect, it is encouraging that the large-

N scaling of Wilson loop correlators in the present model has been observed at fixed

g2N , which coincides with the result obtained by requiring that the loop equations

of the IIB matrix model should reproduce the string field hamiltonian. We presume

that a large-N scaling of Wilson loop correlators — like the one we observed — also

holds for the IIB matrix model; then the only difference would be the spontaneous

breakdown of Lorentz symmetry. One of the good news revealed in the present

work is that low-energy effective theory, based on the one-loop approximation, does

already capture the low-energy dynamics of the supersymmetric matrix model. We

therefore hope to address the most interesting issue of spontaneous breakdown of

Lorentz invariance by using the low-energy effective theory — which is in 10D far

more complicated than in the 4D case. We are going to report on Monte Carlo

studies of IIB matrix model along these lines in the near future.
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A. The algorithm for the Monte Carlo simulation

In this appendix, we explain the algorithm we use for the Monte Carlo simulation of

the supersymmetric matrix model. Only in this appendix we set g = 1 for simplicity.

We first carry out the integration over fermionic matrices to obtain the explicit

formula for the fermion determinant. We calculate

Zf [A] =

∫
dψdψ̄e−Sf , (A.1)

where we use the notation introduced in eq. (2.1). We define a set of generators

ta ∈ gl(N,C) by
(ta)ij = δiiaδjja (a = 1, . . . , N2) , (A.2)

where ia and ja are integers running from 1 to N , specified uniquely by

a = N(ia − 1) + ja . (A.3)

We also introduce the notation ā = N(ja − 1) + ia. The fermionic matrix ψα can be
expanded in terms of ta as

(ψα)ij =

N2∑
a=1

ψaα (t
a)ij , (A.4)

where ψaα = (ψα)iaja. ψ̄α and Aµ can be expanded similarly with the coefficients

ψ̄aα = (ψ̄α)iaja and Aaµ = (Aµ)iaja. Note also that Aāµ = (Aaµ)
∗ due to the Her-

miticity of Aµ.

We define the structure constants gabc of gl(N,C) by

gabc = tr(t
c[ta, tb]) = δjaibδjbicδjcia − δjcibδjbiaδjaic . (A.5)

The fermionic action then reads

Sf = −gabcψ̄cα(Γµ)αβAaµψbβ = −ψ̄aαM′
aα,bβψbβ , (A.6)

where

M′
aα,bβ = −gabc(Γµ)αβAcµ . (A.7)

We first integrate out (ψα)NN and (ψ̄α)NN using the δ functions in the measure (2.2).

We get a factor of 1/N4 followed by the replacements

(ψα)NN =⇒ −
N−1∑
j=1

(ψα)jj ; (ψ̄α)NN =⇒ −
N−1∑
j=1

(ψ̄α)jj (A.8)

in the fermionic action. The integration over the remaining Grassmann variables
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yields detM, whereM is the 2(N2 − 1) × 2(N2 − 1) complex matrix defined by
Maα,bβ =M′

aα,bβ −M′
N2α,bβδiaja −M′

aα,N2βδibjb (A.9)

(the indices a and b run from 1 to N2 − 1). Thus, we obtain
Zf [A] =

1

N4
detM . (A.10)

We first want to show that the determinant detM is real positive.9 For this

purpose we note that the matrix M satisfies the identity σ2Mσ2 = M∗. Hence
if ϕaα is an eigenvector of M with an eigenvalue λ, then ψaα = (σ2)αβ(ϕaβ)

∗ is
an eigenvector of M with an eigenvalue λ∗. It is important that the two vectors
ϕaα, ψaα are linearly independent. The determinant, which is the product of all the

eigenvalues ofM, should therefore be real and positive semi-definite. In the case of
6D or 10D (IIB matrix model) versions of the supersymmetric large-N reduced model,

the fermion integral yields a complex effective action in general. This causes the

notorious sign problem, which makes standard Monte Carlo simulations practically

inapplicable for large N . In the present case, since the determinant detM is real

positive, we can introduce a 2(N2 − 1) × 2(N2 − 1) hermitean matrix D =M†M,
which has real positive eigenvalues, and detM = √detD. Therefore we have written
the effective action for the bosonic matrices Aµ in eq. (2.11) as

Seff = Sb − 1
2
ln detD . (A.11)

We apply the Hybrid R algorithm [18] to simulate this system.10

The first step of the Hybrid R algorithm is to apply the molecular dynamics

method [34]. We introduce a conjugate momentum for Aaµ as Xaµ , which satisfies

Xāµ = (Xaµ)
∗. The partition function can be re-written as

Z =

∫
dXdA e−H , (A.12)

where H is the “hamiltonian” defined by

H =
1

2

∑
µa

XāµXaµ + Sb[A]− 1
2
ln detD . (A.13)

The update of Xaµ can be done by just generating Xaµ with the probability distri-

bution exp(−1
2

∑ |Xaµ|2). In order to update Aaµ, we use the hamiltonian equations
dAaµ(τ)

dτ
=

∂H

∂Xaµ
= Xāµ , (A.14)

dXaµ(τ)

dτ
= − ∂H

∂Aaµ
=
1

2
tr

(
∂D
∂Aaµ

D−1
)
− ∂Sb

∂Aaµ
. (A.15)

9This has been already reported in ref. [14] as a numerical observation. For related work, see

ref. [32].
10Ref. [33] gives an overview of effective algorithms for dynamical fermions, including the Hybrid

R algorithm.
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Along the “classical trajectory” given by the hamiltonian equation,

(i) H is invariant,

(ii) the motion is reversible,

(iii) the phase-volume is preserved,

∂(A(τ), X(τ))

∂(A(0), X(0))
= 1 , (A.16)

where (A(τ), X(τ)) is a point on the trajectory after evolution from (A(0),

X(0)).

Therefore, generating a new set of (A,X) by solving the hamiltonian equation

for a fixed “time” interval τ satisfies detailed balance. This procedure — together

with the proceeding generation of Xaµ with the gaussian distribution — is called “one

trajectory”, which corresponds to “one sweep” in ordinary Monte Carlo simulations.

In order to solve the hamiltonian equation numerically, we have to discretize the

“time” τ . A discretization which maintains the properties (ii) and (iii) is known.

The slight violation of (i) for finite ∆τ causes systematic errors. One can in principle

eliminate the systematic error completely, by making a Metropolis accept/reject

decision at the end of each trajectory. But in the present case, the overhead for this

procedure is rather large. We therefore decided to omit that step, and just use a

sufficiently small ∆τ . Still we can use the specific discretization of ref. [18], which

we explain below, to minimize the systematic error. As we explain later, we do find

a good convergence in small ∆τ , and the systematic error is well under control.

We introduce a short-hand notation for the discretized Xaµ(τ) and Aaµ(τ),

X(r)aµ = Xaµ(r∆τ) ; A(s)aµ = Aaµ(s∆τ) . (A.17)

The hamiltonian equations are discretized as

A(1/4)aµ = A(0)aµ +
∆τ

4
X
(0)
āµ , A(n+1/2)aµ = A(n+1/4)aµ +

∆τ

4
X
(n)
āµ ,

A(m+1/4)aµ = A(m−1/2)aµ +
3∆τ

4
X
(m)
āµ , A(ν)aµ = A

(ν−1/2)
aµ +

∆τ

2
X
(ν)
āµ ,

X(n+1)aµ = X(n)aµ +∆τ

{
1

2
R(n+1/2)aµ − ∂Sb

∂Aaµ

(
A(n+1/2)aµ

)}
, (A.18)

where n = 0, 1, . . . , ν − 1, m = 1, . . . , ν − 1, and R(n+1/2)aµ is defined by

R(n+1/2)cµ = Φ∗aα


∂D

(
A
(n+1/2)
aµ

)
∂Acµ



aαbβ

Φbβ , (A.19)

D (A(n+1/2)aµ

)
Φ =M† (A(n+1/4)aµ

)
η . (A.20)
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Here ηaα are complex variables generated by the gaussian distribution exp(−
∑
aα

|ηaα|2). The judicious choice of the argument of M† is the tool to reduce the sys-
tematic error [18].

We solve eq. (A.20) with respect to Φ by means of the conjugate gradient

method [35], which is iterative. Each iteration involves a multiplication of the matrix

D with some vector v. Since D is a 2(N2−1) × 2(N2−1) matrix, storing D requires
O(N4) memory, and multiplying D with v naively involves O(N4) arithmetic oper-
ations. Actually we can do much better than this. We first recall that D =M†M,
where M is the 2(N2 − 1) × 2(N2 − 1) matrix defined in eq. (A.9). The point is
that the number of non-zero elements ofM is only O(N3) (not O(N4)). Indeed, the

multiplicationM v can be done economically as follows.

We consider

waα =Maαbβvbβ , (A.21)

and define the quantities w′aα and v
′
aα, where a runs from 1 to N

2 as inM′, by

v′aα = vaα for a = 1, . . . , N2 − 1 , v′N2α = −
∑
ia=ja

vaα , (A.22)

w′aα =M′
aαbβv

′
bβ . (A.23)

Now waα can be written as

waα =

{
w′aα − w′N2α for ia = ja

w′aα otherwise .
(A.24)

Thus the problem reduces to calculating the matrix-vector product in eq. (A.23).

Using definition (A.7), we obtain

(w′α)ij = (Γ
µ)αβ [Aµ, v

′
β]ji , (A.25)

where w′α and v
′
α are N × N matrices associated with w′aα and v′aα, respectively, as

in eq. (A.4). The commutator in eq. (A.25) requires O(N3) arithmetic operations.

Thus we save O(N) operations. In addition, we do not have to store neither gabc nor

M. Multiplication ofM† with some vector v is done in the same way.
A similar technique should be used to calculate Raµ in eq. (A.19). Note first that

it can be written as Rcµ = Tcµ + (Tc̄µ)
∗, where Tcµ is given by

Tcµ = Ψaα

(
∂M
∂Acµ

)
aαbβ

Φbβ ,

Ψaα = (MaαbβΦbβ)
∗ . (A.26)

We define Φ′ and Ψ′ in terms of Φ and Ψ, as we defined v′ in terms of v before in
eq. (A.22). Now we can re-write Tcµ as

Tcµ =
∂

∂Acµ

(
Ψ
′
aα(M′)aαbβΦ′bβ

)
. (A.27)
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Using again eq. (A.7), we obtain

(Tµ)ij = −(Γµ)αβ[Ψ′α,Φ′β]ji , (A.28)

where Φ′α, Ψ
′
α and T

′
µ are N ×N matrices associated with Φ′aα, Ψ′aα and T ′aµ, respec-

tively, as in eq. (A.4).

There are two parameters ν and ∆τ in this algorithm. We can choose ν∆τ so

that a typical autocorrelation time is minimized. We have taken ν∆τ = 1 throughout

the present work, and ν = 200, 280, 500 for each of the cases N = 16, 24, 32, and ν =

500, 600 for N = 48. Except in figure 2, we observed that the results are reasonably

well converged at ν = 500, ∆τ = 0.002, so we just present those results. For figure 2

we carried out an extrapolation to ∆τ = 0 by assuming the ∆τ dependence of some

observables Q(∆τ) to be

Q(∆τ)−Q(∆τ = 0) ∼ (∆τ)2 · 〈tr(A 2
µ )〉∆τ . (A.29)

This assumption has been checked for 〈trF 2〉 with the exact result (2.12). We also
observed that 〈tr(A 2

µ )〉∆τ behaves as
〈tr(A 2

µ )〉∆τ ∼ c1 − c2 log∆τ , (A.30)

for small ∆τ , where c1 and c2 are constants depending on N .
11 This implies that

it diverges logarithmically for ∆τ → 0, which is consistent with the theoretical

prediction discussed below eq. (3.3).

Let us comment on the required computational effort of our algorithm. The

dominant part comes from solving the linear system (A.20) using the conjugate

gradient method. First of all, we find that the number of iterations necessary for

the convergence of the method seems to grow linearly with the size of the matrix

D, namely as O(N2). This is much worse than the full QCD case with a fixed
quark mass, where the number of iterations does not depend on the system size.

We may interpret this phenomenon as a sort of “critical slowing down”, since the

present system corresponds to QCD in the chiral limit. As we have seen, the number

of arithmetic operations for each iteration is of order N3. Therefore, the required

computational effort of our algorithm is estimated to be O(N5).

For the bosonic case, we use the heat bath algorithm in the way proposed in

ref. [13], which requires an effort of O(N4). We note, however, that application of

a Hybrid Monte Carlo algorithm [36] allows for an O(N3) algorithm for the bosonic

case, which might be useful for proceeding to much larger N .

Finally, we give the numbers of configurations used for the measurements. For

the supersymmetric case, they are 3060, 1508, 1296, 436 for N = 16, 24, 32, 48,

respectively. For the bosonic case, we used 1000 configurations for each N .
11In QCD the ∆τ dependence of the systematic error is O(∆τ2) [18]. A similar argument leads

to the assumption (A.29). Due to eq. (A.30), the ∆τ dependence of the systematic error in our

case is expected to be (∆τ)2 log∆τ .
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Figure 10: The bosonic distribution of distances ρ(r), plotted against r/
√
g for N = 16,

24, 32 and 48.
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Figure 11: The bosonic Wilson 1-point function 〈W 〉, plotted against k/√g. In this case,
the small k prediction amounts to 1− (N/6)k4.

B. Results for the bosonic case

For comparison we show in this appendix the results for the bosonic case. By the

bosonic case we mean a model obtained by just dropping the fermions from the
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Figure 12: The bosonic Wilson 1-point function 〈W 〉 is plotted now logarithmically
against k2/g, in order to visualize the extent of the area law behavior.

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

B
os

on
ic

 P
ol

ya
ko

v 
1-

po
in

t f
un

ct
io

n 
 <

P
>

k / √g

N=48
N=32
N=24
N=16

Figure 13: The bosonic Polyakov 1-point function 〈P 〉, plotted against k/√g.

supersymmetric matrix model described by the partition function (2.1). Figure 10

shows the distribution ρ(r) defined in section 3. Figures 11 to 17 show the Wilson

loop and Polyakov line correlators defined in section 4. We take g ∝ 1/√N (g = 1

for N = 48) and plot the results against kphys = k/
√
g, as in the supersymmetric

case. We multiply the results by (N/48)2(n−1) for n-point functions.

29



J
H
E
P
0
7
(
2
0
0
0
)
0
1
3

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.1 1

B
os

on
ic

 W
ils

on
 2

-p
oi

nt
 fu

nc
tio

n 
 G

2(W
)

k / √g

N=48
N=32
N=24
N=16

Figure 14: The bosonic Wilson 2-point function G
(W )
2 , multiplied by Z2 ∝ N2, plotted

against k/
√
g.
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Figure 15: The bosonic Polyakov 2-point function G
(P )
2 , multiplied by Z

2 ∝ N2, plotted
against k/

√
g.

The data scale nicely in agreement with the theoretical prediction for large N

given by eq. (4.3). For comparison we also show the 3-point and the 4-point Wilson

loop correlators with the renormalization factors, which were used successfully in

section 4 for the supersymmetric case. We see very clearly that the bosonic prediction

is the correct one in this case.
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Figure 16: The bosonic Wilson 3-point function G
(W )
3 , multiplied by Z3 ∝ N4, plotted

against k/
√
g on the left. On the right we show the corresponding plot using the SUSY

prediction Z3 ∝ N3 instead, which leads to an inferior level of scaling.
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Figure 17: The bosonic Wilson 4-point function G
(W )
4 , multiplied by Z4 ∝ N6, plotted

against k/
√
g on the left. On the right we show the corresponding plot using the SUSY

prediction Z4 ∝ N4 instead, which leads to an inferior level of scaling.
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