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We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU(N) super Yang- 
Mills theory (a 4d counter part of the IKKT model or IIB matrix model). The eigenvalue distribution determines 
the space structure. The measurement of Wilson loop correlators reveals a universal large N scaling. Eguchi- 
Kawai equivalence may hold in a finite range of scale, which is also true for the bosonic case. We finally report 
on simulations of a low energy approximation of the 10d IKKT model, where we omit the phase of the Pfafhan 
and look for evidence for a spontaneous Lorentz symmetry breaking. 

1. MOTIVATION in the bosonic case. 

Several candidates for a constructive definition 
of superstring theory have recently attracted at- 
tention. Here we focus on the IKKT model (or 
IIB matrix model) [l], which is supposed to cor- 
respond to IIB superstring theory in the large N 
limit. That correspondence is supported by some 
analytical arguments. This matrix model is for- 
mally obtained from ordinary super YM gauge 
theory in the zero volume limit (one point). 

2. THE 4D II-B MATRIX MODEL 

Here we study directly the large N dynamics 
of large N reduced matrix models. Some re- 
sults were obtained before for the “bosonic case” 
(where the fermions are dropped by hand), but 
we now want to address mainly the SUSY case. 
In particular we simulate the 4d counterpart of 
the IKKT model [2] - we denote it as 4d IIB 
matrix model - which corresponds again to the 
dimensional reduction of 4d super YM gauge the- 
ory. This model has also been studied analytically 
[3] and numerically in the framework of dynami- 
cal triangularization [4]. Here we report on direct 
Monte Carlo simulations using the Hybrid R al- 
gorithm [5]. Conclusive results can be obtained 
because in the 4d version the fermion determinant 
is real positive - in contrast to the 10d IKKT 
model, where simulations would be plagued by a 
sign problem. We got away with a computational 
effort of O(N5) in the SUSY case, and of 0(N3) 

*Talk presented by W. Bietenholz. 

The 4d IIB matrix model is given by 

Z = /dA e-sb /d$dt,b e-sf 

sb = -~~[A,,&12 

Sj = --$ n-b+kJ:,bLhd) 

whereA,,&,&(~=1...4,cr=1,2)arecom- 
plex, traceless N x N matrices, and the A,, (only) 

are Hermitean. We use r’ = ir?, P4 = Il. In ad- 

dition to SUSY and SO(4) invariance, this model 
has a SU(N) symmetry, which is inherited from 

gauge invariance. 
The first question about this model is if it is 

well-defined as it stands. Since the integration 
domain of dA is non-compact, divergences are 
conceivable. However, our results, as well as re- 
sults on a number of special cases [6-81 confirm 
consistently that this model is well-defined at any 
N; there is no need to impose a IR cutoff. This 
implies that the only parameter g is simply a 
scale parameter, rather than a coupling constant.. 
It can be absorbed by introducing dimensionless 
quantities. The challenge is, however, to tune g as 
a function of N so that the correlators are finite 
at N + 00, see Sections 4 and 5. 

(1) 
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3. THE SPACE STRUCTURE 

In the IIB matrix model, the space coordinates 
arise dynamically from the eigenvalues of the ma- 
trices A, [l]. In general the latter cannot be’di- 
agonalized simultaneously, which implies that we 
deal with a non-classical space. We measure its 
uncertainty by 

and the “maximizing” matrix U is also used for 
introducing the coordinates of N points, 

Xi+ = (~marAp~~~~)ii (i = 1.. . N). (2) 

What we are really interested in is their pairwise 
separation T(x~, xj) = Ixi - xjl, and we show the 
distribution p(r) in Fig. 1. We observe p x 0 at 
short distances (r/d 5 1.5), hence a UV cutoff is 
generated dynamically. We also see that increas- 
ing N favors larger values of r. To quantify this 
effect we measure the “extent of space” 2 

J 
00 

R new = ~-p(r) dr . (3) 
0 

Fig. 2 shows R,,, and A as functions of N (at 
g = 1). The 1 1 ‘nc usion of fermions enhances R,,, 
and suppresses A, keeping their product approxi- 
mately constant. The lines show that both quan- 
tities follow the same power law, R,,,, A K 
N’i4, in SUSY and in the bosonic case. In SUSY 
this behavior is consistent with the branched 
polymer picture: there one would relate the num- 
ber of points as N N ( Rnew/C)dH, where ! is some 
minimal bond, which corresponds to the above 

UV cutoff. The Hausdorff dimension dH = 4 then 
reveals consistency with our result. 

4. POLYAKOV AND WILSON LOOPS 

We define the Polyakov loop P and the Wilson 
loop W - which is conjectured to correspond to 
the string creation operator - as 

P(p) = $-Tr(e’PA’), (4) 

W(P) = ~~(~~PA~~~PA.~-~PA*~-~*A~). (5) 

2Note that the quantity R2 = sow r2p(r) dr diverges, 

since p(r) 0: re3 at large T (see second Ref. in [6]). 
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Figure 1. The distribution of distances between 
space-points in the SUSY case at various N. 
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Figu:: 2. The “extent o;ypace” R,,, and the 
space uncertainty A as functions of N at g = 1. 

Of course the choice of the components of A,, is 
irrelevant, and the parameter p E R can be con- 
sidered as a “momentum”. 

Now g(N) has to be tuned so that (P), (W) 
remain finite as N + co. This is achieved by 

9~IIfi, (6) 

which leads to a beautiful large N scaling; Fig. 
3 shows the invariance of (P) for N = 16.. .48 
in SUSY. Also the bosonic case scales accurately 

PI. 

A 
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Figure 3. The Polyakov function in the SUSY 
case for various values of N and g2N = cm&. 
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Figure 4. The Wilson loop in the SUSY case for 
various values of N and g2 N = cons t. 

The historic 2d Eguchi-Kawai model [9] had a 
(ZN)~ symmetry, which implied (P(p # 0)) = 0, 
a property which was crucial for the proof of the 
Eguchi-Kawai equivalence to gauge theory. As we 
see, this property is not fulfilled here, but (P(p)) 
falls off rapidly, towards a regime where the as- 
sumption of this proof holds approximately. 

We proceed to a more explicit test of Eguchi- 
Kawai equivalence by checking the area law for 
(W(p)). Fig. 4 shows that the area law seems 
to hold in a finite range of scale. Remarkably, 
the behavior is very similar [2] in the bosonic 
case. There we further investigated the behavior 
at much larger N [lo], and we observed that the 
power law regime does neither shrink to zero - as 
it was generally expected - nor extend to infin- 
ity - a scenario which seems possible from Fig. 
4. At least in the bosonic case its range remains 
finite at large N. Recently the same behavior was 
observed in a study of the 10d bosonic case [ll]. 

5. MULTIPOINT FUNCTIONS 

We now consider connected multipoint func- 

tions (0102.. . O,),,,, Oi being a Polyakov or a 
Wilson loop. We wonder if it is possible to renor- 
malize all of those multipoint functions simply by 

inserting O!ren) = ZUi, so that a single factor 2 

renders all ;unctions (O[“““)O~“) . . . Ok”‘),,, 
(simultaneously) finite at large N. 

It turns out that such a universal renormaliza- 
tion factor seems to exist in SUSY. We have to 
set again g cc l/a, and then Z a N provides 
large N scaling, as we observed for a set of 2, 3 
and 4-point functions. Two examples are shown 
in Fig. 5. Our observation can be summarized by 
the SUSY rule 

(0) = G(1) , (01.. .O,) = O(N-“) (n > 2). 
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Figure 5. A Polyakov a-point function 

(Gy) = ([ImP(lc)]2)) and a Wilson Spoint 

function (Giw’ = ([ImW(lc)]2ReW(rC)) - 
([ImW(k)]2) &W(k))) (both connected), with 
g2N = wrist. and renormalization factor 2 a N, 
which leads to large N scaling in the SUSY case. 

This implies that large N factorization holds, 

(01. . .O,) = (01). . .(O,) + O(N-‘), as in 
gauge theory, although coupling expansions are 
not applicable here. 

For the bosonic case, a l/d expansion [7] sug- 
gests large N factorization to hold as well, but it 
also predicts (01 . . . 0,) = O(N-2(n-‘)) (n 2 
2). This is confirmed numerically [2]: in partic- 
ular the 3-point functions shown in Fig. 5 now 
requires Z3 a N4. Therefore no universal renor- 
malization factor 2 exists in the bosonic case, 
which is an important qualitative difference from 
the SUSY case. 

6. SIMULATIONS IN 10 DIMENSIONS 

We also performed simulations in d = 10 [12], 
where we simplified the IKKT model as follows: 

(1) We use a l-loop approximation, which is ex- 

pected to capture the low energy dynamics. This 
amounts to an effective action, keeping track of 
off-diagonal elements only to the quadratic order, 
in the spirit of Ref. [8]. 

(2) We omit the phase of the Pfaffian by hand, 
in order to avoid the sign problem. Thus a Monte 
Carlo study becomes feasible. 

The validity of (1) is supported by our results 

for R,,,, but (2) is certainly a drastic step. Still 
one could hope to observe basic properties of the 
IKKT model at least qualitatively. These sim- 
plifications allow for a simulation effort of only 
0(N3). 

Our main interest here is if the eigenvalue dis- 
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tribution of the Au indicates a spontaneous sym- 
metry breaking (SSB) of SO(10) invariance, as 
it was suggested in the formulation of the IKKT 
model [1]. 

To this end, we consider the moment of inertia 

Tuv - N ( N -  1) i>j 

(i = 1 . . .  N), and we measure its 10 eigenvalues. 
A gap in this spectrum would indicate the SSB of 
Lorentz symmetry. However, this cannot be ob- 
served, even though we raised N up to 512. On 
the contrary, we observe that the eigenvalue dis- 
tribution becomes more and more isotropic as N 
increases, see Fig. 6, and the same is true in d -- 6 
[12]. We conclude that if SSB of Lorentz symme- 
try occurs in the IKKT model, then it must be 
driven by the imaginary part of the action. 
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Figure 6. The spectrum of the moment of inertia 
(normalized by v/N) for N = 192, 256, 384, 512. 

7. C O N C L U S I O N S  

We first simulated the 4d IIB matrix model, 
both, SUSY and bosonic. We varied N up to 
48, which turned out to be sufficient to study the 
large N dynamics. 

We confirmed that the model is well-defined 
as it stands, hence g is a pure scale parameter. 
The space coordinates arise from eigenvalues of 
the bosonic matrices A u. The extent of space 
follows a power law. In SUSY this agrees with 
the branched polymer picture. Fermions leave 
the power unchanged but reduce the space un- 
certainty - -  though it remains finite at large N. 

The large N scaling of Polyakov and Wilson 
loops and their correlators requires g oc 1/x/'N 
in SUSY and in the bosonic case, but the wave 

function renormalization is qualitatively different: 
only in SUSY a universal renormalization exists. 

The area law for Wilson loops holds in a finite 
range of scale for the SUSY and the bosonic case. 
The latter comes as a surprise, and we checked up 
to rather large N that this range remains indeed 
finite. Hence Eguchi-Kawai equivalence to ordi- 
nary gauge theory [9] may hold in some regime. 

Finally we simulated a 10d low energy effective 
theory, where the phase was dropped by hand. 
We could not observe any sign of a spontaneous 
breaking of Lorentz symmetry. 

W.B. thanks the excellent organization of LAT- 
TICE 2000, where he enjoyed discussions with A. 
Gonz~tlez-Arroyo, U.-J. Wiese and J. Wosiek. 
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