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1. Introduction

The study of SU(2) gauge theories at high temperatures is important for our un-

derstanding of the electroweak theory in the early universe. One effect which has

been of interest in this context is the baryon-number non-conservation in the elec-

troweak theory, caused by the anomaly of the baryonic current. After the work

of Kuzmin, Rubakov and Shaposhnikov [1] it was realized that the baryon num-

ber non-conservation, caused by thermal field fluctuations between gauge-equivalent

vacua with different winding numbers, could be large in the unbroken phase of the

electroweak theory. A quantitative verification of the KRS-scenario requires non-

perturbative real time simulations of hot thermal gauge theories, a task we still do

not know how to perform from first principles. However, following suggestions by [2]

that one could use classical thermal gauge theory to address the question, it was

shown in [3] that transitions between vacua with different winding numbers is un-

suppressed at high temperatures in the unbroken phase of the electroweak theory.

Starting with [4, 5], much work has since gone into refining the numerical techniques

used and turning the qualitative statements into quantitative measurements [6]–[12],

and also into understanding to what extent the notion of topology used in the con-

tinuum anomaly calculations is still valid in the lattice simulations [13].

In order to address the determination of the rate of “sphaleron” transitions

quantitatively one needs either to understand the corrections to the rate induced

by using classical thermodynamics rather than the correct quantum field theory

thermodynamics, or to develop better non-perturbative methods suited for real time

simulations. The latter alternative is of course preferable since it might allow us to

address many other non-perturbative questions which involve real-time dynamics of

non-abelian gauge theories at high temperatures, by correctly incorporating thermal

fluctuations in the ultraviolet.
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Much progress has been made in this direction over the last decade, starting

with the concept of hard thermal loops, and culminating with the effective small-

momentum, low-frequency theory of Bödeker [14] and its interpretation in terms

of color conductivity [15, 16]. In ordinary (abelian) plasma physics low frequency

magnetic fields decay slower than naively expected due to Landau damping. It is

now understood that the same mechanism applies to a pure non-abelian plasma,

where the hard, high frequency modes couple to the low frequency magnetic modes

much like the charged particles in an abelian plasma, and in this way produce a new

time scale for the magnetic fluctuations. While the dominant long-range magnetic

fluctuations will occur at the (non-perturbative) length scale of the order 1/g2T , the

lifetime of the fluctuations will be of the order ω ∼ g4T ln(1/g).
On a more quantitative level the soft classical fields (momentum k ≤ gT ) couple

to hard currents according to

Ė = D×B− Jhard , (1.1)

where

Jhard = σE+ ξ , (1.2)

and where the effective noise term ξ is determined by the fluctuation-dissipation

theorem:

〈ξai (t,x)ξbj(t′,x′)〉 = 2Tσ δijδabδ(t− t′)δ(x− x′) . (1.3)

In (1.1) σ denotes the so-called color conductivity, which to a leading log approxi-

mation is given by

σ =
m2

γ
, m2 =

2

3
(gT )2 , γ =

3

16π
g2T ln

(
1

g

)
. (1.4)

m denotes the Debye screening mass and γ the hard gauge fields damping rate

(given here for pure SU(2) gauge theory). The derivation of (1.1) is valid in a range

of frequencies and momenta where

ω � σ and k � γ . (1.5)

For the theory to be applicable to momenta of the order of g2T , one has formally to

require that ln 1/g be parametrically large.

In this frequency range one can ignore the time derivative in (1.1). Then

D×B = σE+ ξ . (1.6)

Working in temporal gauge and ignoring non-linearities, one obtains from (1.6)

k2A+ σȦ = ξ , (1.7)
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which leads to the decay of gauge correlators:

〈A(t)A(0)〉 ∝ exp
{
−k

2

σ
t

}
. (1.8)

The decay time τ for k ∼ g2T is thus of the order
τ ∼ 1

g4T ln(1/g)
, (1.9)

i.e., much longer than the non-perturbative length scale 1/(g2T ).

While this picture no doubt gives an appropriate description of the long wave-

length, low frequency thermal fluctuations for spatial scales up to 1/(g2T ) and time

scales up to 1/(g4T ln(1/g)) if ln(1/g) in some sense can be considered large, the

question arises how well it describes “sphaleron” physics at the electroweak scale

where α ≈ 1/30, i.e. g ≈ 0.65.
Presently there are good indications that the picture works well at the above

value of g. Real time computer simulations have been done, using various ways of

implementing the hard currents [6, 8, 10]. The primary observable in the simula-

tions has been the sphaleron rate. This is so for good reasons. Firstly, it is an

important observable which might play a role in explaining the baryon asymmetry of

the universe. Secondly, it is believed to be dominated by long wavelength, classical

thermal field fluctuations, i.e., one can hope that the classical theory, or at least the

improvements, like Bödeker’s effective field theory, will allow us to determine this

(non-perturbative) rate by computer simulations. Until now all computer simula-

tions basically agree, and there is a kind of consensus in the community that the

sphaleron rate goes as predicted by Arnold, Son and Yaffe (ASY) and Bödeker.

The purpose of this article is not to cast doubt on the effective theory of Bödeker

and ASY, but only to point out that it is may not be clear that it can be applied to

the electroweak theory for temperatures around the phase transition. The derivation

of the effective theory, in particular in the framework of ASY, uses perturbative

concepts like real time gauge correlators and color conductivity, and the explicit

behavior of these objects as functions of momemtum k and frequency ω is discussed.

While some of these objects are gauge dependent they can nevertheless be measured

in the same computer simulations used to determine the sphaleron rate, and one

can directly check if their long wavelength, low frequency part show the behavior

predicted by the effective theory. If not, one could be tempted to conclude that

one needs to go to higher temperature, and that one should not try to match the

sphaleron rate to formulas based on the validity of the long wavelength, low frequency

effective theory.

The rest of this paper is organized as follows: in section 2 we describe shortly

our simulation setup and the set of gauge-covariant and gauge-invariant objects likely

to be governed by a long wavelength effective theory. Our results are reported in

section 3. Section 4 concludes.
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2. Simulation setup and observables

As mentioned in the introduction, there presently exists no genuine non-perturba-

tive way of simulating real-time processes in non-abelian gauge theories from first

principles. Solving the classical field equations of motion is as close as one can get to

a study from first principles, in the sense that no external parameters are introduced

into the system. The caveat is, of course, that the classical thermal distribution

is incorrect: while the thermal fluctuations in the quantum theory are cut off at

scale T , the thermal fluctuation of the classical theory is only cut off at the cut-off

scale Λ ∼ 1/a, where a is the lattice spacing. The non-perturbative, long-distance
magnetic sector of the thermal theory is not expected to be very sensitive to an exact

location of the ultraviolet cutoff, as long as the cutoff is not too close to the magnetic

scale. At the same time, the perturbative sector will be changed and, whenever one

encounters the Debye mass one has to make a replacement:

m2D ∼ g2T 2 → g2T/a . (2.1)

A typical high-temperature field configuration will be dominated by its large-

momentum components, i.e., for the classical field theory the components of the

order of the cutoff, for the full quantum theory the components of order T . If

one is interested in the dynamic behavior of the system at large distances (from the

magnetic screening length and above) one needs a way to filter out the prevalent large-

momentum components of the field. One way to do so is by cooling. In the context of

sphaleron transitions this method was first applied in the very first numerical study

of these processes at the electroweak phase transition, [17], as well as in the study

of the flow of eigenvalues of the Dirac operator in presence of lattice sphalerons [13].

Later it was introduced as a tool to reduce the large momentum, short distance

lattice artifacts of the sphalerons in real time simulations [9]. As discussed in [9],

moderate cooling is best suited for this purpose, since it leads to an exponential

decay of high-frequency modes. In this way the sphaleron profile, buried in the

thermal fluctuations, will be enhanced. However, one can go a step further and simply

view the cooling as a general procedure for integrating out the large momentum

components of the thermal classical field theory, basically leaving us with the large

distance physics of the classical theory.

Our procedure is thus the following: first we generate a thermal field configura-

tion for an SU(2) classical Yang-Mills theory on a lattice [5], for a given temperature

T . We then let the system evolve according to the classical equations of motion.

At selected instances along the classical trajectory we extract long-wavelength in-

formation from the field configuration by cooling (we defer to the next section the

discussion of how deep the cooling should be). Using the new configurations we can

measure whatever observables we have in mind, and since we are probing the low

momentum, classical sector of the theory, we should be able to compare our results
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with the prediction from effective theory given by (1.1)–(1.2) provided we make the

appropriate substitutions like (2.1) and provided that we are in a coupling constant

and temperature region where (1.1) and (1.2) are valid.

The classical hamiltonian dynamics is most conveniently studied in the temporal

gauge where the electric field E(x, t) is the conjugate momentum to A(x, t). It is

worth pointing out that this is also the gauge where eqs. (1.1)–(1.3) naively make

sense. As explained in [16, 18] eqs. (1.1)–(1.3) can be generalized to other gauges,

but we will not need it here. We will study unequal-time correlators of the form

C12(t) ≡ 1
V

∫
d3x 〈O1(x, t)O2(x, 0)〉 , (2.2)

where O1,2 are designed to probe the long-wavelength properties of interest. In
particular, if one is interested in the magnetic degrees of freedom, a natural choice

would be the autocorrelators of the magnetic field tensor and of its covariant curl:

O1(x, t) = O2(x, t) =
{
D×B(x, t)
B(x, t)

. (2.3)

There is a special choice of O1,2 that allows to determine the color conductivity σ.
Consider a correlator of B(x, 0) with (1.6) at time t. It follows that

σ(t) ≡
∫
d3x 〈D×B(x, 0) ·D×B(x, t)〉∫
d3x 〈D×B(x, 0) · E(x, t)〉 −→ σ , (2.4)

if the time lag t is large compared to the autocorrelation time of the effective noise.

On the other hand, we can also study the autocorrelator of the color charge

density

ρ ≡ D · E , (2.5)

if we are interested in detecting soft longitudinal excitations of the system (plasmons).

Note that all the space-local correlators of gauge-covariant quantities are invari-

ant under the residual time independent gauge transformations which are not fixed

by the choice of temporal gauge. However, if we transform these correlators away

from the temporal gauge, they will in general depend on a Wilson line in the time

direction, connecting x, 0 to x, t. This being the case, two remarks are in order.

First, it is unclear to us to what extent (2.4) can serve as a genuine gauge invari-

ant definition of color conductivity, since it is based on correlations between gauge

covariant objects. In fact, as emphasized in [16], it is not very clear even in a per-

turbative framework how to define color conductivity beyond leading perturbative

order. In [16] it was defined to next-to-leading order simply as the coefficient which

appears in the effective theory (1.1)–(1.3), when formulated in temporal gauge or

related, so called flow gauges, of which the Coulomb gauge is a limiting case. Our

definition can be seen as an extrapolation of this philosophy: we have defined an ef-

fective theory by integrating out the high momentum part of the (classical) thermal
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theory and we then define σ by (1.1) and (1.2). Then a measurement of σ(t) by (2.4)

can be viewed as testing if our effective theory looks anything like (1.1) and (1.2).

Secondly, it is not apriori clear what effect the connecting temporal Wilson line

has on the characteristic time scale of correlators between gauge-covariant quantities.

For this reason, we also study the dynamics of a truly gauge-invariant object, B2(x, t).

As our results show, there is hardly any difference in correlation time scales for gauge-

covariant and for gauge-invariant quantities.

3. Numerical results

A real-time correlator C(t) of cooled classical gauge fields on a lattice depends on

the following dimensional parameters: the temperature and the coupling constant

in the unique combination g2T , the system size L, the cooling time τ , and, finally,

the lattice spacing a. As usual, we express all the other dimensional quantities in

terms of the lattice spacing. The choice of other parameters is dictated by physical

considerations. In particular, the inverse lattice temperature β ≡ 4/(g2Ta) is chosen
within a range where the ratio of the perturbative Debye mass mD to g

2T of the

classical theory is close to that of the full SU(2) Yang-Mills theory at electroweak

temperatures T ∼ 100GeV. Since we are interested in the dynamics of fields with
momenta of the order of g2T , the dimensionless combination L/(βa) should be large

enough in order to avoid finite-size effects. Most of our simulations were performed

at L/(βa) = 2.4. We verified that variations of L/(βa) around that value did not

have a measurable effect. Finally, the cooling time τ should be large enough in

order to suppress modes with momenta harder than those on the g2T scale. In

most our simulations (g2T )2τ = 3.84. For β = 10, we also conducted simulations

at (g2T )2τ = 2.56. This variation of the cooling time had very little impact on the

real-time behavior of the correlators.

Our original motivation for measuring real-time correlators of cooled fields was

to determine the color conductivity, as explained in the previous section. We will

discuss our (thus far unsuccessful) attempt to determine σ at the end of this section.

However, the real-time correlators we measure are interesting in their own right, and

we will first describe their properties as they transpired in the simulation.

In figures 1 through 3 we present the autocorrelators 〈D×B(x, t) ·D×B(x, 0)〉,
〈B(x, t) · B(x, 0)〉, and 〈B2i (x, t)B2i (x, 0)〉 − 〈B2i (x, t)〉〈B2i (x, 0)〉, respectively. Note
that in the first two cases we determine autocorrelators of gauge-covariant quantities,

whereas in the third case the quantity in question is gauge-invariant. In each case the

autocorrelators are normalized by their value at the origin, while the time variable is

expressed in units of 4/(g2T ). Notably, in all three cases the curves corresponding to

different values of β coincide as long as the correlators retain a substantial fraction of

their original value. This property is especially evident in the first two cases, where

the error bars are smaller.
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Figure 1: The autocorrelator 〈D×B(x, t) ·D×B(x, 0)〉 versus time t in units of (g2T )−1
for β = 8.33 (crosses), β = 10.0 (squares), β = 12.5 (triangles), and β = 15.0 (stars).
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Figure 2: The autocorrelator 〈B(x, t) · B(x, 0)〉 versus time t in units of (g2T )−1 for
β = 8.33 (crosses), β = 10.0 (squares), β = 12.5 (triangles), and β = 15.0 (stars).

To further quantify this behavior of the time scales, we introduce the integral

autocorrelation time defined for an autocorrelator C(t) as

t∫ ≡ (C(0))−1
(∫ ∞
0

C(t)dt

)
,

where in our numerical estimates the upper limit of integration is replaced by a finite

value tu, for which C(tu)/C(0) � 1. In figure 4 we plot the dimensionless quantity
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Figure 3: The connected autocorrelator 〈B2i (x, t)B2i (x, 0)〉 − 〈B2i (x, t)〉〈B2i (x, 0)〉 versus
time t in units of (g2T )−1 for β = 8.33 (crosses), β = 10.0 (squares), β = 12.5 (triangles),
and β = 15.0 (stars).

4/(g2Tt∫ ) as a function of 1/β = g2Ta/4. Remarkably, in all three cases t∫ turns

out to be of the order of g2T and shows little dependence on the lattice spacing

throughout the range considered. There is therefore no evidence that in this range of

the lattice spacings our cooled autocorrelators follow the ASY — Bödeker scenario,

wherein the expected behavior is t∫ ∝ 1/(g4T 2a), up to logarithmic corrections.
The autocorrelator 〈B2i (x, t)B2i (x, 0)〉 turned out to be a much noisier quantity

than the other two, resulting in much larger error bars despite comparable sample

sizes in all the three cases. Apart from this difference, the integral autocorrela-

tion times behave very similarly for the gauge-covariant and for the gauge-invariant

quantities, even though the gauge-invariant autocorrelator of the former necessarily

involves a straight adjoint Wilson line connecting the points x, t and x, 0.

Next, we consider the color charge autocorrelator 〈D · E(x, t)D · E(x, 0)〉. As
shown in figure 5, this quantity is strikingly different from the magnetic-field au-

tocorrelators considered earlier. The time scale for the color charge correlation is

proportional to the lattice spacing and does not depend on g2T .

This result can be contrasted with perturbative predictions. One would expect

that the color-charge autocorrelator is dominated by the plasmon mode, whose fre-

quency in the classical theory is of the order g
√
T/a and whose decay rate is of

the order g2T . We observe none of these properties in the range of lattice spacings

considered.

Finally, we attempted to determine color conductivity σ, as defined in the Intro-

duction, using eq. (2.4). As figure 6 demonstrates, this attempt failed in two ways.
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〈B2i (x, t)〉〈B2i (x, 0)〉 (squares).
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β = 10 (crosses), β = 12.0 (squares), and β = 14.0 (triangles) Note the complete or partial

overlap of the data points.

First of all, σ(t) does not appear to approach a constant for times in excess of the

expected autocorrelation time of the noise term ξ (and far in excess of the measured

autocorrelation time of the noise). Secondly, the numerical value of σ(t) is very small

(less than 0.25/a) compared to the value expected in the ASY scenario (aσ ≈ 15).
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Figure 6: The color conductivity in lattice units defined as in eq. 2.4 versus time t in

lattice units for β = 10 (crosses) and β = 12.0 (squares).

Given this small value of σ(t), it is not clear how neglecting the Ė term in eq. 1.1

can be justified.

4. Conclusion

In summary, we see no sign of the ASY-Bödeker scenario in the classical SU(2) theory,

in the regime roughly corresponding to the electroweak scale. This negative finding

does not rule out the ASY-Bödeker scenario in general, but one is led to question its

applicability outside the asymptotically weak-coupling regime, which in the classical

lattice theory corresponds to asymptotically small lattice spacing.

Neither do our findings contradict earlier numerical data for the classical Yang-

Mills theory, in particular, the sphaleron rate measurement by Moore and Rum-

mukainen [7]. Their simulation was performed in the range of couplings (or lattice

spacings) which overlaps the one considered here. Results of that work are consistent

with the zero continuum limit of the rate, as predicted by ASY and by Bödeker. But

they do not rule out a finite classical rate in the continuum.

This brings us to the following methodological remark. The sphaleron transition

rate is a very important quantity in its own right, worthy of a careful numerical

study. However, such study may not be the optimal way to test the theory of ASY

and Bödeker. Precisely because the sphaleron rate is an essentially nonperturbative

quantity, there is no easy way to disentangle the perturbative ASY-Bödeker damping

from genuinely nonperturbative effects. To compound the difficulty, topology on a

lattice is ill-defined and requires special treatment. By contrast, a study like the
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one reported here attempts to make a direct contact with perturbation theory, by

measuring objects such as color conductivity. It therefore may be better suited for

testing perturbative predictions.

Note added in proof: after this article had been submitted for publication, a

result similar to ours was obtained by Hindmarsh and Rajantie in the abelian Higgs

model [19].
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