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Large gaugedQ balls
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We studyQ balls associated with localU(1) symmetries. SuchQ balls are expected to become unstable for
large values of their charge because of the repulsion mediated by the gauge force. We consider the possibility
that the repulsion is eliminated through the presence in the interior of theQ ball of fermions with charge
opposite to that of the scalar condensate. Another possibility is that two scalar condensates of opposite charge
form in the interior. We demonstrate that both these scenarios can lead to the existence of classically stable,
large, gaugedQ balls. We present numerical solutions, as well as an analytical treatment of the ‘‘thin-wall’’
limit.
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I. INTRODUCTION

Nontopological solitons namedQ balls can appear in sca
lar field theories withU(1) symmetries@1#. ~For a review of
the early literature, see Ref.@2#.! These objects can b
viewed as coherent states of the scalar field with a fixed t
U(1) charge. The case of globalU(1) symmetries has at
tracted much attention. The reason is the presence of
symmetries in the standard model, related to baryonic or
tonic charge. In supersymmetric extensions of the stand
model, the scalar superpartners of baryons or leptons
form coherent states with a fixed baryon or lepton numb
making the existence ofQ balls possible. Their propertie
@3,4#, cosmological origin@5#, and experimental implication
@6# have been the subject of several recent studies. N
Abelian global symmetries can also lead to the existenc
Q balls @7#.

We are interested in the less popular case ofQ balls re-
sulting from localU(1) symmetries@8,9#. SuchQ balls be-
come unstable for large values of their charge because o
repulsion mediated by the gauge force. However, smalQ
balls can still exist. A possibility that has not been conside
before is that the repulsion is eliminated through the pr
ence in the interior of theQ ball of fermions with charge
opposite to that of the scalar condensate. The fermions m
carry an additional conserved quantum number that prev
their annihilation against the condensate. This scenario
lead to the existence of largeQ balls. The fermion gas may
also be replaced by another scalar condensate, of opp
charge to the first, such that the interior of theQ ball remains
neutral.

In the following we discuss, in detail, the above scenar
in the context of a toy model. We show that arbitrarily lar
Q balls can exist and examine the constraints imposed on
parameters by the requirement of classical stability.
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II. SMALL GAUGED Q BALLS

For completeness we summarize briefly the basic prop
ties of gaugedQ balls in a toy model~see Ref.@9# for the
details!. We consider a complex scalar fieldf(rW,t)
5 f (rW,t)exp@2i u(rW,t)#/A2, coupled to an Abelian gauge fiel
Am. The Lagrangian density is

L5
1

2
]m f ]m f 1

1

2
f 2~]mu2eAm!22U~ f !2

1

4
FmnFmn.

~1!

The totalU(1) charge of a particular field configuration is

Qf5E d3rW f 2~ u̇2eA0!. ~2!

Without loss of generality we assumee,Qf>0 in the fol-
lowing. The valuee50 leads to decoupling of the scala
from the gauge field.

We consider a spherically symmetric ansatz that negle
the spatial components of the gauge fieldAi50, i 51,2,3 and
assumesu5vt @1#. The componentA0 of the gauge field
corresponds to the electrostatic potential that is respons
for the repulsive force destabilizing theQ ball. The equations
of motion for the fields are

f 91
2

r
f 81 f g22

dU~ f !

d f
50 ~3!

g91
2

r
g82e2f 2g50, ~4!

with r 5urWu, g(r )5v2eA0(r ), and primes denoting deriva
tives with respect tor. The total charge and energy are

Qf5E dV rf54pE r 2dr f 2g ~5!
©2001 The American Physical Society06-1
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E5E dV e

54pE r 2drF1

2
f 821

1

2e2
g821

1

2
f 2g21U~ f !G . ~6!

TheQ ball solution of the equations of motion involves a
almost constant non-zero scalar fieldf (r )5F in the interior
of the Q ball, which moves quickly to zero~the vacuum
value! at the surface. We are interested in the limit in whi
the radiusR of theQ ball is much larger than the thickness
its surface and the total charge can be big. In this limit a
for eFR!1, the energy can be expressed as@9#

E5QfF2U~F !

F2 G 1/2F11
C2/3

5 G5QfF2U~F !

F2 G 1/2

1
3e2Qf

2

20pR
,

~7!

with

R5F 3Qf

4pFA2U~F !
G 1/3F11

C2/3

45 G ~8!

C5
3e3Qf

4p
A F4

2U~F !
. ~9!

The ratioE/Qf increases withQf because of the pres
ence of the electrostatic term in Eq.~7!. This means that
large Q balls are unstable and tend to evaporate scalar
ticles from their surface in order to increase their bindi
energy. For smallQf the above expressions are not app
cable. Numerical solutions indicate that the ratioE/Qf be-
comes large again because of the contribution from the fi
derivative terms that we neglected. Therefore, there i
value (Qf)min for which E/Qf is minimized. Classical sta
bility requires that (E/Qf)min,d2U(0)/d f2 ~assuming that
the absolute minimum of the potential is atf 50), so that the
Q ball does not disintegrate into scalar particles of u
charge.

III. LARGE GAUGED Q BALLS WITH FERMIONS

It is clear from the above discussion that gaugedQ balls
with very largeQf become unstable because of electrosta
repulsion. One possibility that could remedy this problem
that fermions with charge opposite to that of the scalar ba
ground neutralize the electrostatic field and eliminate the
pulsion. A model that realizes this scenario has a Lagrang
density

L5
1

2
]m f ]m f 1

1

2
f 2~]mu2eAm!22U~ f !

1 i c̄agm~]m1 ie8Am!ca2
1

4
FmnFmn. ~10!

In the absence of Yukawa couplings, the scalar and fermio
fields carry independent conservedU(1) charges. A linear
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combination of these charges is gauged while the orthogo
one remains global. We assume that there areN fermionic
degrees of freedom, labeled bya51 . . .N, with gauge cou-
pling e8 and negligible mass. Realistic scenarios could
volve condensates of electrically charged mesonic fie
with characteristic scales for their potentialsO(100 MeV–1
GeV!, and Higgs or squark fields, with characteristic sca
O(100 GeV–1 TeV!. In all these cases, neutralizing ferm
ons, such as electrons, can be considered effectively m
less.

The equation of motion~3! is not altered by the presenc
of fermions, but Eq.~4! becomes

g91
2

r
g82e2f 2g2ee8ca

†ca50. ~11!

Instead of solving the Dirac equation, we approximate
fermions as a non-interacting Fermi gas with position dep
dent density. This is the Thomas-Fermi approximation@10#.
The fermionicU(1) charge and energy density are

^ca
†ca&5Nrc5N

kF
3

3p2
,

^ca
†~2 iaW •¹W !ca&5Nec5N

kF
4

4p2
, ~12!

in terms of the Fermi momentumkF . The Dirac equation for
a fermion near the Fermi surface results in the expressio

mc5kF~r !1e8A0~r !5kF~r !1
e8

e
@v2g~r !#. ~13!

We see thatmc can be interpreted as the chemical potent
i.e., the energy cost in order to add an extra fermion on
top of the Fermi sea. The fermions rearrange themselve
thatmc is position independent. It is convenient to define t
gauge-invariant chemical potential

m̃5m2
e8

e
v5kF~r !2

e8

e
g~r !. ~14!

The total energy is now given by

E54pE r 2drF1

2
f 821

1

2e2
g821

1

2
f 2g21U~ f !1Nec

1~EW •¹W A01Ne8rcA01erfA0!G , ~15!

whererf is given by Eq.~5!, rc by the first of Eqs.~12!, and
EW is the electric field. The equations of motion can be o
tained by minimizing the energy under constant scalar
fermionic charge. This can be achieved through the use
Lagrange multipliers v and mc . Minimization of E
2v*rfdV2mcN*rcdV with respect toA0 , f, and kF re-
sults in Eqs.~11!, ~3!, and ~13!, respectively. Finally, the
6-2
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LARGE GAUGED Q BALLS PHYSICAL REVIEW D 64 125006
quantity in parentheses in the right-hand side of Eq.~6! van-
ishes through the application of Gauss’ law, Eq.~11!.

The above considerations provide a simple method for
determination of the properties of largeQ balls. We are in-
terested in the ‘‘thin-wall’’ limit, in which the effects of the
surface of theQ ball may be neglected.~A more careful
discussion of the validity of this approximation is given
the next section.! In this limit, the total energy is given by

E5S 1

2
f 2g21U~ f !1N

kF
4

4p2D V, ~16!

with V the volume of theQ ball. The charges of the scala
condensate and the fermions are

Qf5 f 2gV, Qc5N
kF

3

3p2
V. ~17!

In terms of the constant scalar and fermion chargesQf and
Qc , the total energy to be minimized is given by

E5
1

2

Qf
2

f 2V
1U~ f !V1

~3p2!4/3

4p2N1/3

Qc
4/3

V1/3
. ~18!

Minimization with respect tof and use of the first of Eqs
~17! gives

f g25
dU~ f !

d f
[U8. ~19!

This relation could have been obtained by requiring that
~3! be satisfied for constant fields. The existence of suc
solution for Eq.~11! leads to

e f2g52e8N
kF

3

3p2
. ~20!

This implies

e8Qc1eQf50 ~21!

and guarantees the electric neutrality of the interior of theQ
ball.

We can also obtain the equilibrium volume of our lar
fermion Q ball. It is given by

V5
Qf

Af 3U8
. ~22!

Minimization of Eq. ~16! with respect toV results in the
relation

U~ f !5
1

2
f 2g21

1

3
N

kF
4

4p2
5

1

2
f 2g21

1

3
ec . ~23!

It can be put in a more convenient equivalent form,
which the scaling betweenQf and V is explicit. Expressed
solely in terms off it takes the form
12500
e

.
a

r

2U5 f U81
~3p2!4/3

6p2 U e

e8
U4/3

1

N1/3
f 2@U8#2/3. ~24!

Equations~19!, ~20!, and~24! uniquely determine the val
ues of f , g, kF in the interior of a largeQ ball. As a conse-
quence,m̃ can be also specified through Eq.~14!. It is now
obvious that the total energy scales linearly withQf for a
given set of values forf andg

E

Qf
5F1

2
AU8

f
1

U

Af 3U8
1

~3p2!4/3

4p2 U e

e8
U4/3

1

N1/3
~ f 3U8!1/6G .

~25!

For massless fermions, the stability condition min(E/Qf)
,AU9(0) guarantees that a large gaugedQ ball cannot dis-
integrate into a collection of free particles. One could a
consider the possibility that af particle is surrounded by a
‘‘cloud’’ of fermions ~or the other way around!, so that the
resulting ‘‘atom’’ is approximately neutral. A collection o
such states would probably be energetically favorable t
collection of free particles, due to the electrostatic attracti
However, for couplingse,ue8u&1, the electrostatic binding
energy is expected to be much smaller than the mass o
free scalars, similar to the situation in normal atoms. For t
reason, the above relation gives a sufficiently accurate c
rion for the classical stability ofQ balls.

In the limit e→0, Eqs. ~19!–~23! give kF50 and the
well-known conditions for the existence of globalQ balls are
reproduced:v25E2/Q252U( f )/ f 25U8/ f @1#.

IV. NUMERICAL SOLUTIONS

In this section we present numerical solutions of the eq
tions of motion~11!, ~3!, and~13!. The two differential equa-
tions require four boundary conditions. We imposef 8(r
50)5g8(r 50)50, so that there are no singularities at t
center of theQ balls. We also imposef (r 5`)50 and
g8(r 5`)50, so that the solutions outside theQ balls cor-
respond to the normal vacuum. We use a potential of
form U( f )5 f 2/22 f 4/41l2f 6/6, in order to make compari
sons with the results of Ref.@9#. For the same reason w
choosel250.2 and e50.1. We assume that there areN
510 fermionic species of unit chargee8520.2. A large
number of species results in a small fermionic kinetic ene
that helps to keep theQ balls classically stable. Moreove
valuesN5O(10) are typical of realistic theories, such as t
MSSM. All dimensionful quantities are considered to
renormalized with respect to the mass term in the poten
~set equal to 1!.

Q ball solutions of various sizes are obtained by fixing t
value of m and varyingv. The chemical potentialm is as-
sumed to be negative. The reason is apparent through
~13!. If we would like to interpretA0 as the electrostatic
potential, we must choose a gauge such thatA0(r )}r 21 for
larger. By takingm negative, we expect thatkF will become
0 at a finite radial distance. We assume that there are
fermions at larger distances, so that Eq.~13! is inapplicable.
Instead we imposekF50 in Eq. ~11!, which results in the
6-3
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ANAGNOSTOPOULOS, AXENIDES, FLORATOS, AND TETRADIS PHYSICAL REVIEW D64 125006
expected behavior forA0(r ). Positive values ofm would
result in a non-zero fermionic density at arbitrary distan
from the center of theQ ball.

In Figs. 1–3 we present a series ofQ ball solutions of
increasing size. In Fig. 1 we plot the scalar fieldf as a func-
tion of the radial distance from the center of theQ ball. We
observe thatf (r ) behaves as a step function to a very go
approximation, even for fairly smallQ balls. In Fig. 2 we
depict the magnitude of the electric field for the same so
tions. The smallestQ ball has the strongest electric field. Th
field vanishes at the center for symmetry reasons, but qui
grows withr. For large enoughr it falls }r 22. For largerQ
balls the electric field is zero in the interior, because of
cancellation of the charge of the scalar field by that of
fermionic gas. The electric field is non-zero near the surfa
while it falls again}r 22 for large r.

In Fig. 3 we plot the scalar and fermionic charge densit
as a function of the radial distance. For the smallestQ ball
the fermions are not capable to neutralize the interior. Th
is a mismatch between the scalar and fermionic densi
Moreover, there is a large concentration of scalar charge
the surface. This is a result of the electrostatic repulsion
forces the positive unit charges to maximize the dista

FIG. 1. The magnitude of the scalar fieldf as a function of the
radial distancer for Q balls of increasing size.

FIG. 2. The electric fieldE as a function of the radial distancer
for Q balls of increasing size.
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between themselves. As the size of theQ ball increases, the
charge densities in the interior become opposite to e
other. For largeQ balls their magnitude is independent of th
radius. This is the ‘‘thin-wall’’ limit we discussed in the pre
vious section. The values off , g, andkF in the interior~and,
therefore, the charge densities! should be uniquely deter
mined by Eqs.~19!–~23!. We have checked thatf (r 50),
g(r 50), and kF(r 50) for the largeQ-ball solutions de-
picted in Figs. 1–3 satisfy Eqs.~19!–~23! with an accuracy
of better than 1%.

A particular question merits some discussion at this po
From Figs. 1–3 one could infer naively that the profile of t
surface is constant for largeQ balls and merely displaced a
different radii R. This would mean that the electric field i
the same near the surface for all largeQ balls. Such a field
can only be produced if the net surface charge densit
constant and the net surface charge scalesQs}R2. One im-
plication would be that the electrostatic contribution to t
total energy of the system;Qs

2/R}R3 would scale propor-
tionally to the volume. As a result, our assumption that
surface effects are negligible in the ‘‘thin-wall’’ limit would
be invalid. However, the numerical solutions do not confi
this picture. The shape of the numerical solution var
slightly at the surface even for largeQ balls. The electric
field at the surface becomes smaller for increasing rad
while the fermionic density is modified appropriately. N
merically we have not identified any residual surface effe
Moreover, we expect that a more rigorous treatment of
fermionic cloud that surrounds theQ ball would support this
conclusion. Our simple approximation of the fermions as
non-interacting gas is adequate for the interior but very cr
near the surface. We expect that, in a more careful treatm
of the surface, a surrounding fermionic cloud will neutrali
completely theQ ball ~similarly to the neutralization of at-
oms!. In this picture, the surface effects would be even le
important in the ‘‘thin-wall’’ limit.

In Fig. 4 we plot the energy to charge ratio as a functi
of the chargeQf of the scalar condensate. The fermion
chargeQc may differ substantially fromQf for small Q
balls. As we have assumed that the fermions are mass

FIG. 3. The charge densities of the scalar condensate and
fermionic gas as a function of the radial distancer for Q balls of
increasing size.
6-4
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LARGE GAUGED Q BALLS PHYSICAL REVIEW D 64 125006
and normalized everything with respect to the scalar m
term, the classical stability requirement isE/Qf,1. In Fig.
4 we observe a series of curves that correspond to diffe
~negative! values ofm. The fermionic content of a smallQ
ball is controlled throughm and, for the sameQf , the vari-
ous curves have different ratiosQc /Qf . In Fig. 5 we plot
Qc /Qf as a function ofQf for the same range values ofm
as in Fig. 4. We observe thatQc /Qf tends to increase with
decreasingumu. As the ratioE/Qf decreases for decreasin
umu, we conclude that, for fixedQf , the Q balls become
more stable by absorbing fermions and increasing their
mionic content. A limit to the process of fermion accretion
set by the requirement of a positive chemical potential,
that the fermions are bound to theQ ball.

For Qf&104, the fermionic content becomes negligib
and we obtain the gaugedQ balls of Ref.@9#. For Qf&103

the ratioE/Qf increases because of the contribution of t
derivative terms to the energy@9#. For Qf*107, Qc /Qf
51 and the energy to charge ratio has a very weak dep
dence onm andQf . In this region the ‘‘thin-wall’’ approxi-
mation is valid. The gauge invariant quantitym̃ of Eq. ~14! is
almost constant. Asymptotically forQf→`, the properties

FIG. 4. The energy to charge ratioE/Qf as a function of the
scalar chargeQf of the Q ball.

FIG. 5. The ratio of scalar to fermionic chargeQc /Qf as a
function of the scalar chargeQf of the Q ball.
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of theQ balls are completely determined by the values off ,
g, and kF in the interior as given by the solution of Eq
~19!–~23!.

For our choice of parameters, the biggestQ balls are the
most stable. Moreover, as we discussed above, the stabil
enhanced by the absorption of fermions. These results
gest an efficient accretion mechanism for largeQ balls with
important astrophysical implications@11#. For different pa-
rameters it is possible that smallQ balls with Qf;103 and
without fermions become the most stable states. Howeve
is apparent from Fig. 4 that a barrier would still separate
large from the smallQ balls. The decay of largeQ balls into
smaller fragments and free fermions would involve tunn
ling and probably would proceed at a very slow rate.

The dependence of the ratioE/Qf on N and e8 in the
‘‘thin-wall’’ limit is given in Table I. The various values have
been obtained through the numerical solution of the al
braic system of Eqs.~19!–~23! for e50.1. We observe that a
small numberN of fermionic species withue8u5e results in
a high energy to charge ratio and, therefore, unstableQ balls.
This behavior is caused by the big contribution from t
fermionic kinetic energy. Large values ofN permit the dis-
tribution of the compensating charge among various spec
thus reducing the fermionic energy}N21/3.

V. LARGE GAUGED Q BALLS WITH TWO
SCALAR CONDENSATES

Another possibility is that two scalar condensates w
opposite charges form in the interior of a gaugedQ ball. An
appropriate Lagrangian density is

L5
1

2
]m f ]m f 1

1

2
f 2~]mu12eAm!21

1

2
]mx]mx

1
1

2
x2~]mu22e8Am!22U~ f ,x!2

1

4
FmnFmn.

~26!

The two scalar fields carry independent conservedU(1)
charges, a linear combination of which is gauged. We ass
a time dependence for the two condensates of the formu1
5v1t andu25v2t. The resulting equations of motion are

f 91
2

r
f 81 f ~v12eA0!22

]U~ f ,x!

] f
50 ~27!

x91
2

r
x81x~v22e8A0!22

]U~ f ,x!

]x
50 ~28!

TABLE I. The energy to charge ratioE/Qf in the ‘‘thin-wall’’
limit, for various values of the parametersN ande8.

N51 N52 N54 N56 N510 N515 N520

e8520.1 1.954 1.654 1.403 1.277 1.135 1.036 0.97
e8520.2 1.021 0.878 0.759 0.700 0.635 0.589 0.56
e8520.3 0.724 0.633 0.559 0.522 0.481 0.453 0.43
6-5
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A091
2

r
A081e f2~v12eA0!1e8x2~v22e8A0!50. ~29!

The energy of the system is given by the expression

E54pE r 2drH 1

2
A08

21
1

2
f 821

1

2
f 2(v12eA0)21

1

2
x82

1
1

2
x2(v22e8A0)21U~ f ,x!1[(EW •¹W A0

1e f2(v12eA0)A01e8x2(v22e8A0)A0] J . ~30!

Similarly to the discussion in Sec. III, the equations of m
tion ~27!–~29! can be obtained by minimizing the total e
ergy under constant total charges of the two scalar cond
sates. The expression in the second line of Eq.~30! vanishes
through application of Gauss’ law, Eq.~29!.

The numerical solution of the three second-order differ
tial equations~27!–~29! is more difficult than in the case of
scalar condensate with compensating fermions. In that c
we had to integrate two second-order differential equati
and an algebraic one. Moreover, we expect a qualitative
havior very similar to the one studied in Secs. III and IV. F
a largeQ ball to remain classically stable, the net charge
its interior must be zero. A possible mismatch at the surf
could result in non-zero electrostatic energy. However, in
‘‘thin-wall’’ limit, this contribution is expected to become
negligible. For this reason, we limit our discussion to t
analytical treatment of the ‘‘thin-wall’’ limit, which is more
useful for practical applications.

In this limit, the total energy is given by

E5S 1

2
f 2g1

21
1

2
x2g2

21U~ f ,x! DV, ~31!

with V the volume of theQ ball andg15v12eA0 and g2
5v22e8A0. The charges of the two scalar condensates

Qf5 f 2g1V, Qx5x2g2V. ~32!

They are taken to satisfy an electric charge neutrality c
dition

eQf1e8Qx50. ~33!

Keeping each of them fixed means that we must minim
the quantity

E5
1

2

Qf
2

f 2V
1

1

2

Qx
2

x2V
1U~ f ,x!V. ~34!

Minimization with respect toV results in the relation

U~ f ,x!5
1

2
f 2g1

21
1

2
x2g2

2 . ~35!

Three more constraints can be obtained by requiring
Eqs.~27!–~29! be satisfied for constant fields. They are
12500
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f g1
25

]U~ f ,x!

] f
, ~36!

xg2
25

]U~ f ,x!

]x
, ~37!

e f2g11e8x2g250. ~38!

The first two could have been obtained through the minim
zation of the total energy of Eq.~34! with respect tof andx.
The last equation guarantees the electric neutrality of
interior of theQ ball. The four equations~35!–~38! uniquely
determine the gauge-invariant quantitiesf , x, g1, andg2 in
the interior of a largeQ ball. As a consequence,E, Qf , and
Qx are also specified through Eqs.~31! and~32!. Similarly to
the fermionic case, the fixed chargesQf and Qx scale lin-
early with the volume for fixed values of their interior fiel
variablesf , x, g1, andg2. One reason for this is the charg
neutrality condition in Eq.~33! which they satisfy. Hence the
total energy of the double condensate configuration sc
linearly with respect to the scalar chargeQf5ue8/euQx . The
classical stability condition becomes min(E),mfQf

1mxQx , with mf
2 5]2U(0,0)/]f2, mx

25]2U(0,0)/]x2 the
masses of the two scalars at the vacuum atf5x50.

VI. CONCLUSIONS

The main emphasis in the studies ofQ balls has been on
theories with globalU(1) symmetries. Theories with loca
U(1) symmetries can supportQ balls as well. However, in
the absence of a neutralizing mechanism, the electros
repulsion destabilizes theQ balls with significant charge. In
the main part of this paper we pointed out that gaugedQ
balls can be stabilized through the neutralization of the sc
condensate by fermions of opposite charge. The total en
is increased because of the kinetic energy of the fermio
However, the resulting configuration can be stable even
an arbitrarily large charge of the scalar condensate.

From a cosmological perspective, the neutralization
gaugedQ balls is expected. For example, one could envis
the existence of electricQ balls that could be produced du
ing phase transitions@5# when the Universe passes throug
an electric-charge breaking vacuum@12#. It seems likely that
several fermionic species could be trapped within theQ ball
during its formation. The ones with a charge of similar si
to the scalar condensate will be expelled, so that the resu
object will remain approximately neutral.

The existence of large electric fields can lead to spon
neous pair creation. The presence of a strong electros
field at the surface of theQ ball can separate a virtua
fermion-antifermion pair and bring the particles on ma
shell @13#. The fermion will be attracted towards the surfac
while the antifermion will be expelled. In the vacuum, th
critical field strength isEcrit5mc

2/ue8u. Our assumption tha
the fermion mass is much smaller than the typical scale
the potential of the scalar field implies that this mechanism
very efficient. In the interior of aQ ball, the pair creation
stops only when the fermionic energy levels are populated
6-6
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to a Fermi momentum comparable to the scale of the sc
field potential. It seems, therefore, likely that large gaugedQ
balls can be neutralized through this mechanism, instea
disintegrating.

We mention that evaporation from the surface is poss
if the scalar field has decay channels into light species@14#.
In this case, simultaneous evaporation of the decay prod
and fermions maintains the approximate neutrality of theQ
ball.

The tendency of gaugedQ balls to trap fermions in their
interior could have interesting experimental consequen
Even though we concentrated on massless fermions, h
exotic species may have found their way to the interior
gaugedQ balls. Thus the discovery of aQ ball may lead to
the additional discovery of the exotic species trapped in
interior. The fact that the energy per charge of aQ ball is
reduced when its fermionic content is increased~up to neu-
tralization! indicates an efficient accretion mechanism w
important astrophysical implications@11#.

We also discussed the possibility of neutralization o
gaugedQ ball through the presence of two scalar conde
sates of opposite charge in its interior. In this case the
mation of Q balls seems less likely than in the case of o
scalar condensate with compensating fermions. For neutrQ
balls to be produced, two condensates with the appropr
properties~values of f , x, v1 , v2) must be assumed to b
,

ev

s
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-
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te

generated dynamically after a phase transition@5#. This
should be more difficult than the trapping of fermions fro
the thermal bath in the region with a non-zero charged c
densate.

Finally, we point out that the neutralization mechanism
expected to work for general potentials of the scalar field
particular, we expect it to be applicable to the case of pot
tials with flat directions, such as the ones appearing in su
symmetric extensions of the standard model. In this case
global Q balls do not approach the ‘‘thin-wall’’ limit, even
though they can become very big, with energy that sca
E}Q3/4 @15#. The gaugedQ balls with similar potentials can
not reach large sizes, unless a neutralization mechan
~through trapping of fermions for example! eliminates the
electrostatic repulsion.
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