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We studyQ balls associated with loc&l (1) symmetries. Sucl balls are expected to become unstable for
large values of their charge because of the repulsion mediated by the gauge force. We consider the possibility
that the repulsion is eliminated through the presence in the interior oQtbeall of fermions with charge
opposite to that of the scalar condensate. Another possibility is that two scalar condensates of opposite charge
form in the interior. We demonstrate that both these scenarios can lead to the existence of classically stable,
large, gauged) balls. We present numerical solutions, as well as an analytical treatment of the “thin-wall”
limit.
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I. INTRODUCTION II. SMALL GAUGED Q BALLS

. . . For completeness we summarize briefly the basic proper-
Nontopological solitons nameq balls can appear in sca- P y brop

lar field theories withJ (1) symmetrieg1]. (For a review of tles 9f gauged ba!ls In & toy modelsee Ref.[?] for:[he
the early literature, see Ref2].) These objects can be details). we -coDS|der a complex scala-r fleldﬁ(r,t).
viewed as coherent states of the scalar field with a fixed totaf f(,t)exi —i 6(r,t)J/y2, coupled to an Abelian gauge field
U(1) charge. The case of globbl(1) symmetries has at- A*. The Lagrangian density is
tracted much attention. The reason is the presence of such
symmetries in the standard model, related to baryonic or lep- u 1, 5 v
tonic charge. In supersymmetric extensions of the standard £= 59ufd*f+51%(d,0—eA,)"—U(f)— 7 F,,F*"
model, the scalar superpartners of baryons or leptons can (1)
form coherent states with a fixed baryon or lepton number,
making the existence o balls possible. Their properties
[3,4], cosmological origif5], and experimental implications
[6] have been the subject of several recent studies. Non-
Abelian global symmetries can also lead to the existence of Q¢:f d3rf2(9—eAy). @)
Q balls[7].

We are interested in the less popular cas&dballs re-
sulting from localU (1) symmetried8,9]. SuchQ balls be-  Without loss of generality we assuneQ,=0 in the fol-
come unstable for large values of their charge because of tHewing. The valuee=0 leads to decoupling of the scalar
repulsion mediated by the gauge force. However, si@all from the gauge field.
balls can still exist. A possibility that has not been considered We consider a spherically symmetric ansatz that neglects
before is that the repulsion is eliminated through the presthe spatial components of the gauge fiale=0,i=1,2,3 and
ence in the interior of th& ball of fermions with charge assumesf=wt [1]. The componeni, of the gauge field
opposite to that of the scalar condensate. The fermions musbrresponds to the electrostatic potential that is responsible
carry an additional conserved quantum number that preventsr the repulsive force destabilizing ti@@ball. The equations
their annihilation against the condensate. This scenario caof motion for the fields are
lead to the existence of larg@ balls. The fermion gas may
also be replaced by another scalar condensate, of opposite 2 du(f)
charge to the first, such that the interior of Qéall remains 7+ —f' +fg2— —ar 0 3
neutral. '

In the following we discuss, in detail, the above scenarios
in the context of a toy model. We show that arbitrarily large L2 o
Q balls can exist and examine the constraints imposed on the 9"+ 9’ —ef7g=0, (4)
parameters by the requirement of classical stability.

The totalU(1) charge of a particular field configuration is

with r=|F, g(r)=w—eAy(r), and primes denoting deriva-
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combination of these charges is gauged while the orthogonal

E=J dVe one remains global. We assume that there Nwfermionic

degrees of freedom, labeled =1 . . .N, with gauge cou-
1., U R pling €' and negligible mass. Realistic scenarios could in-
>f +2—e29 +5f%97+U(f)|. (6  volve condensates of electrically charged mesonic fields,

with characteristic scales for their potenti@$100 MeV-1
GeV), and Higgs or squark fields, with characteristic scales
O(100 GeV-1 TeV. In all these cases, neutralizing fermi-
ons, such as electrons, can be considered effectively mass-

less.

h The equation of motioii3) is not altered by the presence
Oof fermions, but Eq(4) becomes

=477f radr

The Q ball solution of the equations of motion involves an
almost constant non-zero scalar fiél@d) =F in the interior
of the Q ball, which moves quickly to zerdgthe vacuum
value at the surface. We are interested in the limit in whic
the radiusk of the Q ball is much larger than the thickness of
its surface and the total charge can be big. In this limit an
for eFR<1, the energy can be expressed @k

2
g"+-g' —e*f’g—ee yly*=0. (11
_[eum)*? » c?  [2uF) ] 3e%Q? r
= S = 20mR” Instead of solving the Dirac equation, we approximate the
(7)  fermions as a non-interacting Fermi gas with position depen-
, dent density. This is the Thomas-Fermi approximafib@.
with The fermionicU (1) charge and energy density are
3Q, 1/3{ N CZB} ® @
=l — — Ty —
AmF\2U(F) 45 (W) =Npy=N_—,
3e’ F4
o= 2690 . 9 B -
4 2U(F) (Y (—ia- V)¢ >_N6‘”—NF' (12
a

The ratioE/Q,, increases withQ, because of the pres- . ) .
ence of the electrostatic term in E(f). This means that N terms of the Fermi momentuky: . The Dirac equation for
large Q balls are unstable and tend to evaporate scalar paR fermion near the Fermi surface results in the expression
ticles from their surface in order to increase their binding ,
energy. For s_maIQ¢ th_e ab_ove expressions are not appli- 1= Ke () + €' Ag(r) =ke(r) + e—[w—g(r)]. (13)
cable. Numerical solutions indicate that the reifQ, be- e
comes large again because of the contribution from the field
derivative terms that we neglected. Therefore, there is 4Ve see thaj, can be interpreted as the chemical potential,
value @ 4)min for which E/Q,, is minimized. Classical sta- 1-€- the energy cost in order to add an extra fermion on the
bility requires that E/Q 4) min<d?U(0)/df? (assuming that top of the Fermi sea. The fermions rearrange themselves so
the absolute minimum of the potential isfat 0), so that the thatu, is position independent. It is convenient to define the
Q ball does not disintegrate into scalar particles of unitdauge-invariant chemical potential
charge.

!

e/
pu=p——o=Ke(r)——g(r). (14)
lIl. LARGE GAUGED Q BALLS WITH FERMIONS € e

It is clear from the above discussion that gaugedalls  The total energy is now given by
with very largeQ, become unstable because of electrostatic
repulsion. One possibility that could remedy this problem is
that fermions with charge opposite to that of the scalar back- E:47Tf redr
ground neutralize the electrostatic field and eliminate the re-
pulsion. A model that realizes this scenario has a Lagrangian
density +(E- ﬁA0+ Ne' pyAgtep,Ag)

1 1 1
Zfr2 12 ~§22
2f +262g +2f g +U(f)+N6¢

: (15

1 1

L=50d,f0"T+ zfz(%ﬁ’—eAﬁ)z— u(f) wherep 4 is given by Eq(5), p,, by the first of Eqs(12), and

E is the electric field. The equations of motion can be ob-
tained by minimizing the energy under constant scalar and
fermionic charge. This can be achieved through the use of
Lagrange multipliersw and w,. Minimization of E

In the absence of Yukawa couplings, the scalar and fermionie- [ p 4dV—u, /N[ p,dV with respect toA,, f, andkg re-
fields carry independent conservel{1l) charges. A linear sults in Egs.(11), (3), and (13), respectively. Finally, the

— 1
+iz,0ay”(c7#+ie’AM)¢//a—ZFWF‘“’. (10
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quantity in parentheses in the right-hand side of By van-
ishes through the application of Gauss’ law, Etfl).

The above considerations provide a simple method for the

determination of the properties of largg balls. We are in-
terested in the “thin-wall” limit, in which the effects of the
surface of theQ ball may be neglected A more careful
discussion of the validity of this approximation is given in
the next section.In this limit, the total energy is given by

4

= Ef2 2+U(f)+N£ % (16)
2 J 4m?)

with V the volume of theQ ball. The charges of the scalar
condensate and the fermions are

3

k
Qu=f1gV, Q=N_5V. (17)
T

In terms of the constant scalar and fermion chai@gsand
Q. the total energy to be minimized is given by

Qd) UV (3 2)4/3 Q4/3
+ ( ) 4772N1/3 Vl/3

== 2 2y

(18

Minimization with respect td and use of the first of Egs.
(17) gives

du(f)

df

2=———=U". (19
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(3772)4/3 e 413
672

2U=fU’+ f2Iu’]?s.

(29)

; Nl/3

Equationg19), (20), and(24) uniquely determine the val-
ues off, g, ke in the interior of a large ball. As a conse-
quence, can be also specified through E44). It is now
obvious that the total energy scales linearly w@h, for a
given set of values fof andg

1 u U
-+ +
f f3u’

4/3
E

9,"

(3772)4/3 e

412 e

1
— 3 1/6
> ()

e!
(25

For massless fermions, the stability condition rii,)
<yU"(0) guarantees that a large gaugedball cannot dis-
integrate into a collection of free particles. One could also
consider the possibility that & particle is surrounded by a
“cloud” of fermions (or the other way aroungdso that the
resulting “atom” is approximately neutral. A collection of
such states would probably be energetically favorable to a
collection of free particles, due to the electrostatic attraction.
However, for couplings,|e’|<1, the electrostatic binding
energy is expected to be much smaller than the mass of the
free scalars, similar to the situation in normal atoms. For this
reason, the above relation gives a sufficiently accurate crite-
rion for the classical stability of balls.

In the limit e—0, Egs.(19-(23) give ke=0 and the
well-known conditions for the existence of glolfalballs are
reproducedw?=E?/Q?=2U(f)/f?=U"/f [1].

This relation could have been obtained by requiring that Eq.

(3) be satisfied for constant fields. The existence of such a

solution for Eq.(11) leads to

3

=—e N— 20
fg= 3.2 (20)
This implies

e'Q,+teQ,=0 (21

and guarantees the electric neutrality of the interior of@he
ball.

We can also obtain the equilibrium volume of our large

fermion Q ball. It is given by

Qy
NS

Minimization of Eq. (16) with respect toV results in the
relation

V=

(22

1 k4 1 1
2 2 —_f2~24

U(f)— 3

(23

IV. NUMERICAL SOLUTIONS

In this section we present numerical solutions of the equa-
tions of motion(11), (3), and(13). The two differential equa-
tions require four boundary conditions. We impo&gr
=0)=g'(r=0)=0, so that there are no singularities at the
center of theQ balls. We also imposd(r=«)=0 and
g'(r=«)=0, so that the solutions outside tkeballs cor-
respond to the normal vacuum. We use a potential of the
form U(f)=f?/2—f4/4+ \?t/6, in order to make compari-
sons with the results of Ref9]. For the same reason we
choosen?=0.2 ande=0.1. We assume that there ake
=10 fermionic species of unit charge =—0.2. A large
number of species results in a small fermionic kinetic energy
that helps to keep th® balls classically stable. Moreover,
valuesN= (O(10) are typical of realistic theories, such as the
MSSM. All dimensionful quantities are considered to be
renormalized with respect to the mass term in the potential
(set equal to L

Q ball solutions of various sizes are obtained by fixing the
value of u and varyingw. The chemical potentigh is as-
sumed to be negative. The reason is apparent through Eq.
(13). If we would like to interpretA, as the electrostatic
potential, we must choose a gauge such gt )or 1 for
larger. By taking u negative, we expect th&t will become

It can be put in a more convenient equivalent form, forO at a finite radial distance. We assume that there are no

which the scaling betweeQ  andV is explicit. Expressed
solely in terms off it takes the form

fermions at larger distances, so that Etp) is inapplicable.
Instead we imposé&:=0 in Eq. (11), which results in the
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FIG. 1. The magnitude of the scalar fidlds a function of the FIG. 3. The charge densities of the scalar condensate and the
radial distance for Q balls of increasing size. fermionic gas as a function of the radial distanctr Q balls of

increasing size.

expected behavior foAy(r). Positive values ofu would
result in a non-zero fermionic density at arbitrary distancedetween themselves. As the size of pévall increases, the
from the center of th&) ball. charge densities in the interior become opposite to each

In Figs. 1-3 we present a series @Qfball solutions of  other. For large balls their magnitude is independent of the
increasing size. In Fig. 1 we plot the scalar fiélds a func-  radius. This is the “thin-wall” limit we discussed in the pre-
tion of the radial distance from the center of {Qeball. We  vious section. The values &f g, andkg in the interior(and,
observe thaf(r) behaves as a step function to a very goodtherefore, the charge densitieshould be uniquely deter-
approximation, even for fairly smalD balls. In Fig. 2 we mined by Eqgs.(19—(23). We have checked thdt(r =0),
depict the magnitude of the electric field for the same solug(r=0), andkg(r=0) for the largeQ-ball solutions de-
tions. The smalles® ball has the strongest electric field. The picted in Figs. 1-3 satisfy Eq$19)—(23) with an accuracy
field vanishes at the center for symmetry reasons, but quicklgf better than 1%.
grows withr. For large enough it falls «r ~2, For largerQ A particular question merits some discussion at this point.
balls the electric field is zero in the interior, because of the~rom Figs. 1-3 one could infer naively that the profile of the
cancellation of the charge of the scalar field by that of thesurface is constant for larg@ balls and merely displaced at
fermionic gas. The electric field is non-zero near the surfaceglifferent radii R. This would mean that the electric field is
while it falls againor —2 for larger. the same near the surface for all laiQeballs. Such a field

In Fig. 3 we plot the scalar and fermionic charge densitiesan only be produced if the net surface charge density is
as a function of the radial distance. For the smal@dtall  constant and the net surface charge sc@lgsR2. One im-
the fermions are not capable to neutralize the interior. Therglication would be that the electrostatic contribution to the
is a mismatch between the scalar and fermionic densitiesotal energy of the system Q2/RxR® would scale propor-
Moreover, there is a large concentration of scalar charge nedbnally to the volume. As a result, our assumption that the
the surface. This is a result of the electrostatic repulsion thagyrface effects are negligible in the “thin-wall” limit would
forces the positive unit charges to maximize the distancée invalid. However, the numerical solutions do not confirm

this picture. The shape of the numerical solution varies

0.45 — . . . . slightly at the surface even for larg@ balls. The electric
04 | field at the surface becomes smaller for increasing radius,
035 | i while the fermionic density is modified appropriately. Nu-
merically we have not identified any residual surface effect.
03 1 Moreover, we expect that a more rigorous treatment of the
025 fermionic cloud that surrounds tt@ ball would support this
o 02 conclusion. Our simple approximation of the fermions as a
015 | ! non-interacting gas is adequate for the interior but very crude
04l | near the surface. We expect that, in a more careful treatment
005 L/ of the surface, a surrounding fermionic cloud will neutralize
eV completely theQ ball (similarly to the neutralization of at-
0 oms. In this picture, the surface effects would be even less
-0.05 ' : : : : important in the “thin-wall” limit.

0 50 100 150 200 250 300

. In Fig. 4 we plot the energy to charge ratio as a function

of the chargeQ, of the scalar condensate. The fermionic
FIG. 2. The electric fielE as a function of the radial distance  chargeQ, may differ substantially fromQ, for small Q
for Q balls of increasing size. balls. As we have assumed that the fermions are massless
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13 p

TABLE I. The energy to charge ratig/Q, in the “thin-wall”

limit, for various values of the parametdxsande’.
12

1.1 ] N=1 N=2 N=4 N=6 N=10 N=15 N=20

] e'=-0.1 1954 1.654 1403 1.277 1.135 1.036 0.972
o e’'=-0.2 1.021 0.878 0.759 0.700 0.635 0.589 0.560
i 0.9 e'=-0.3 0.724 0.633 0.559 0.522 0.481 0.453 0.435
0.8
07 of the Q balls are completely determined by the values of
’ = - g, andkg in the interior as given by the solution of Egs.
0.6 L s s s : . (19)—(23).
1000 10000 100000 1x10% 1x10% 1x10% For our choice of parameters, the bigg€sballs are the
Q, most stable. Moreover, as we discussed above, the stability is

enhanced by the absorption of fermions. These results sug-
FIG. 4. The energy to charge ratilfQ, as a function of the  gest an efficient accretion mechanism for la@alls with
scalar charg®, of the Q ball. important astrophysical implicatiorfd1]. For different pa-
rameters it is possible that sm&l balls with Q ,~ 10° and
and normalized everything with respect to the scalar maswithout fermions become the most stable states. However, it
term, the classical stability requirementH$Q ,<1. In Fig.  is apparent from Fig. 4 that a barrier would still separate the
4 we observe a series of curves that correspond to differef@rge from the smalQ balls. The decay of larg® balls into
(negative values ofu. The fermionic content of a smal)  smaller fragments and free fermions would involve tunnel-
ball is controlled throughs and, for the sam®,,, the vari-  ling and probably would proceed at a very slow rate.
ous curves have different rati&d,/Q,. In Fig. 5 we plot The dependence of the ratl/Q,, on N ande’ in the
Q¢/Q¢ as a function 0Q¢ for the same range values pf “thin-wall” !Imlt is given in Table I. The vanou_s values have
as in Fig. 4. We observe tha,/Q, tends to increase with been obtained through the numerical solution of the alge-
decreasingu|. As the ratioE/Q, decreases for decreasing braic system of Eq419)—(23) for e=0.1. We observe that a
||, we conclude that, for fixe®,, the Q balls become small numbeN of fermionic species withe’|=e results in
more stable by absorbing fermions and increasing their fera high energy to charge ratio and, therefore, unst@dalls.
mionic content. A limit to the process of fermion accretion is This behavior is caused by the big contribution from the
set by the requirement of a positive chemical potential, sdermionic kinetic energy. Large values bf permit the dis-
that the fermions are bound to tigeball. tribution of the compensating charge among various species,
For Q,=10%, the fermionic content becomes negligible thus reducing the fermionic energyN~*"°.
and we obtain the gauged balls of Ref.[9]. ForQ,= 10°
the ratioE/Q,, increases because of the contribution of the V. LARGE GAUGED Q BALLS WITH TWO
derivative terms to the enerd]. For Q,= 10/, Qu/Qy SCALAR CONDENSATES
=1 and the energy to charge ratio has a very weak depen-
dence oru andQ, . In this region the “thin-wall” approxi-
mation is valid. The gauge invariant quantftyof Eq.(14) is
almost constant. Asymptotically fa@,— o, the properties

Another possibility is that two scalar condensates with
opposite charges form in the interior of a gau@gdtall. An
appropriate Lagrangian density is

1 1, , 1
0.6 i . i . . L= Eﬁﬂf(ﬁ”uf‘l‘ Ef (ﬂﬂel—eAﬂ) + 5(9#)((9’“)(
o5} 1, L 1 ,
+§X (9,0,—€'A,) —U(f,X)—ZFWF“ .
0.4 |
o (26)
< oaf . .
g The two scalar fields carry independent consertgd)
0.2 b | charges, a linear combination of which is gauged. We assume
ng-g - a time dependence for the two condensates of the féym
01} “;-2j4 = w4t and 6,= w,t. The resulting equations of motion are
p=-2.2
oL S P . A L2 , JU(f,x)
1000 10000 100000 1x10% 1x10%7 1x10% f +Ff +f(wi—ehy) _TZO (27
Q‘P
_ . 2 U (f,x)
FIQ. 5. The ratio of scalar to fermionic chargg,/Q, as a Y+ —X'+X(w2_e’Ao)2_ X =0 (28)
function of the scalar charg®,, of the Q balll. r ax
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L, 2, ) L ) , dU(f,x)
Ag+ FA°+ ef(wi—eAy)+e' x(w—e' Ay =0. (29 fgi= —r (36)
The energy of the system is given by the expression JU(f,x)
X9o= (37)
1 1 1 1 X
E=47rf rzdr(EA(’,ZJr Ef’2+ Efz(wl—er)2+ EX’Z
ef’g,+e’ x%g,=0. (39

1 - -
2 ’ 2
toX (2= €"Ag) "+ U(f,x)+[(E- VA The first two could have been obtained through the minimi-

zation of the total energy of E¢34) with respect td and y.

The last equation guarantees the electric neutrality of the

interior of theQ ball. The four equation§35)—(38) uniquely

determine the gauge-invariant quantitiesy, g,, andg, in

Similarly to the discussion in Sec. Ill, the equations of mo-the interior of a largeQ ball. As a consequencek, Q. and

tion (27)—(29) can be obtained by minimizing the total en- Q, are also specified through Eq81) and(32). Similarly to

ergy under constant total charges of the two scalar condenihe fermionic case, the fixed charg@s, andQ, scale lin-

sates. The expression in the second line of @Q) vanishes  early with the volume for fixed values of their interior field

through application of Gauss’ law, E(R9). variablesf, , g;, andg,. One reason for this is the charge
The numerical solution of the three second-order differenneutrality condition in Eq(33) which they satisfy. Hence the

tial equationg27)—(29) is more difficult than in the case of a total energy of the double condensate configuration scales

scalar condensate with compensating fermions. In that casgearly with respect to the scalar chaiQg = |e//e|QX_ The

we had to integrate two second-order differential equationgjassical stability condition becomes &M 5Qy

and an algebraic one. Moreover, we expect a qualitative be:rmex’ with mff{?zU(0,0)/r?qu, m2=2U(0,0)/3x? the

havior very similar to the one studied in Secs. Il and IV. For asses of the two scalars at the vaXcuurnSatX=0.

a largeQ ball to remain classically stable, the net charge in

its interior must be zero. A possible mismatch at the surface

could result in non-zero electrostatic energy. However, in the VI. CONCLUSIONS

negligible. For this reason, we limit our discussion to thetheories with globall(1) symmetries. Theories with local
analytical treatment of the “thin-wall” limit, which is more j(1) symmetries can suppo@ balls as well. However, in

+efi(w,—eAy)Ayt+e x*(w—e Ag)Ag] |- (30)

useful for practical applications. the absence of a neutralizing mechanism, the electrostatic
In this limit, the total energy is given by repulsion destabilizes th@ balls with significant charge. In
1 1 the main part of this paper we pointed out that gau@ed

E= Efz‘g'iqr §X293+ U(f,x) |V, (31)  balls can be stabilized through the neutralization of the scalar

condensate by fermions of opposite charge. The total energy
, is increased because of the kinetic energy of the fermions.
with V the volume of theQ ball andg, = w;~eAy andd, g yever, the resulting configuration can be stable even for
= w,—€'Ao. The charges of the two scalar condensates arg, aitrarily large charge of the scalar condensate.
_2 2 From a cosmological perspective, the neutralization of
Qu=Fa1V, Q=x"g:V. (32 gaugedQ balls is expected. For example, one could envision
They are taken to satisfy an electric charge neutrality conthe existence of electriQ balls that could be produced dur-
dition ing phase transitiong5] when the Universe passes through
an electric-charge breaking vaculi®?]. It seems likely that
eQ,+e'Q,=0. (33)  several fermionic species could be trapped within@hlall
during its formation. The ones with a charge of similar sign
Keeping each of them fixed means that we must minimiz&o the scalar condensate will be expelled, so that the resulting
the quantity object will remain approximately neutral.
The existence of large electric fields can lead to sponta-
1 Q(Zzs 1 Q)z( neous pair creation. The presence of a strong electrostatic
E_§W+§)(2_V+U(f')()v' (34 field at the surface of th& ball can separate a virtual
fermion-antifermion pair and bring the particles on mass
Minimization with respect td/ results in the relation shell[13]. The fermion will be attracted towards the surface,
while the antifermion will be ezxpelled. In the vacuum, the
critical field strength isE.,;;=m:/|e’|. Our assumption that
U(f.x)= §f29§+ 5)(295- (39 the fermion mass is much smgller than the typical scale of
the potential of the scalar field implies that this mechanism is
Three more constraints can be obtained by requiring thatery efficient. In the interior of & ball, the pair creation
Egs.(27)—(29) be satisfied for constant fields. They are stops only when the fermionic energy levels are populated up
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to a Fermi momentum comparable to the scale of the scalagenerated dynamically after a phase transit[@). This
field potential. It seems, therefore, likely that large gau@ed should be more difficult than the trapping of fermions from
balls can be neutralized through this mechanism, instead dhe thermal bath in the region with a non-zero charged con-
disintegrating. densate.

We mention that evaporation from the surface is possible Finally, we point out that the neutralization mechanism is
if the scalar field has decay channels into light speflds. expected to work for general potentials of the scalar field. In
In this case, simultaneous evaporation of the decay producfsarticular, we expect it to be applicable to the case of poten-
and fermions maintains the approximate neutrality of @he tials with flat directions, such as the ones appearing in super-
ball. symmetric extensions of the standard model. In this case the

The tendency of gauge@ balls to trap fermions in their global Q balls do not approach the “thin-wall” limit, even
interior could have interesting experimental consequenceshough they can become very big, with energy that scales
Even though we concentrated on massless fermions, hea®eQ¥4[15]. The gauged balls with similar potentials can-
exotic species may have found their way to the interior ofnot reach large sizes, unless a neutralization mechanism
gaugedQ balls. Thus the discovery of @ ball may lead to  (through trapping of fermions for exampleliminates the
the additional discovery of the exotic species trapped in itelectrostatic repulsion.
interior. The fact that the energy per charge oQaball is
reduced when its fermionic content is increased to neu-
tralization indicates an efficient accretion mechanism with
important astrophysical implicatiorj41]. We would like to thank L. Perivolaropoulos for helpful
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