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We propose a method for Monte Carlo simulations of systems with a complex
action. The method has the advantages of being in principle applicable to any such
system and provides a solution to the overlap problem. We apply it in random
matrix theory of finite density QCD where we compare with analytic results. In
this model we find non–commutativity of the limits µ → 0 and N → ∞ which
could be of relevance in QCD at finite density.

1. INTRODUCTION

There exist many interesting systems in high energy physics whose action

contains an imaginary part, such as QCD at finite baryon density, Chern-

Simons theories, systems with topological terms (like the θ-term in QCD)

and systems with chiral fermions. This imposes a severe technical problem

in the simulations, requiring an exponentially large amount of data for

statistically significant measurements as the system size is increased or the

critical point is approached. Furthermore, the overlap problem appears

when standard reweighting techniques are applied in such systems and it

becomes exponentially hard with system size to visit the relevant part of

the configuration space. In Ref. [1] it was proposed to take advantage of a
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factorization property of the distribution functions of the observables one

is interested to measure. This approach can in principle be applied to any

system and it eliminates the overlap problem completely. In some cases it is

possible to use finite size scaling to extrapolate successfully to large system

sizes where it would have been impossible to measure oscillating factors

directly. The method has been applied successfully in matrix models of non

perturbative string theory (IKKT) 1, random matrix theory of finite density

QCD (RMT) 2 as well as the 2d CP3 model, the 1d antiferromagnetic model

with imaginary B and the 2d compact U(1) with topological charge 3. In

this paper we present our results for RMT which we study in order to test

the factorization method against known analytical results. We also discuss

an observed non–commutativity in the limits µ → 0 and N → ∞ which

maybe relevant to Taylor expansion and imaginary µ approaches to the

problem of finite density QCD.

The factorization method has the important property that it can be

applied to any system featuring the complex action problem. Let a system

be given by a partition function Z =
∫

dA e−S0 eiΓ and the corresponding

phase quenched model Z0 =
∫

dA e−S0 where S = S0 − iΓ is the action of

the system with its real and imaginary parts. A represents collectively the

degrees of freedom of the model and in our case it corresponds to a set of

N × N matrices. In case we are interested in measuring some observable

O, we consider the distribution functions ρO(x) = 〈δ(x−O)〉 and ρ
(0)
O

(x) =

〈δ(x −O)〉0, where 〈. . .〉0 refers to Z0. Then we define the fiducial system

ZO,x =
∫

dA e−S0δ(x−O), the weight factor wO(x) = 〈eiΓ〉O,x and the dis-

tribution ρO(x) factorizes ρO(x) = 1
C

ρO(x)wO(x) where C = 〈eiΓ〉0. Then

〈O〉 = 1
C

∫ ∞

−∞
dxx ρ

(0)
O

(x)wO(x). The δ–function constraint is implemented

in our simulations by considering the system ZO,V =
∫

dA e−S0 eV (O) where

V (z) = 1
2γ(z − ξ)2 and γ, ξ are parameters which control the constraining

of the simulation. The results are insensitive to the choice of γ as long as

it is large enough. Then we have that wO(x = 〈O〉i,V ) = 〈eiΓ〉i,V . The

distribution of O in Zi,V has a peak x̄ and the quantity V ′(x̄) is the value

of f
(0)
O

(x) = d
dx

ln ρ
(0)
O

(x) at x = x̄. The function ρ
(0)
O

(x) can be obtained

by integrating an analytic function to which we fit the f
(0)
O

(x) data points.

By applying this method we force the system to sample configurations

which give the essential contributions to 〈O〉, something that would be

exponentially difficult with system size in the phase quenched model, elim-

inating this way the overlap problem. This already allows us get close to

the thermodynamic limit with modest computer resources. Furthermore we
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obtain direct knowledge of wO(x) and ρO(x) which allows us to understand

the effect of Γ. This is important for understanding the properties of the

system when Γ plays a crucial role.

2. RMT OF FINITE DENSITY QCD

We consider RMT with one quark flavour and zero quark mass 4. The

model is chosen in order to study the correctness and effectiveness of the

factorization method, since one can compare results with known analytical

solutions even for finite N . The observable we measure is the “quark num-

ber density” ν as a function of the chemical potential µ, and we consider

the distribution functions ρi(x), where i = R, I corresponds to the real and

imaginary parts of ν respectively. Notice that the effect of Γ is dramatic,

causing a discontinuous transition in ν. Our results 2 nicely reproduce the

exact results known for finite N and we are able to achieve large enough

values of N ≤ 48 to obtain the thermodynamic limit. In Figure 1 we show

the plots of the distribution functions ρR,I(x) for µ = 0.2. Unfortunately,

the function wR(x) is not positive definite and the important contributions

come from the region where it changes sign. As expected, we find that

finite size scaling does not work as well as in the case of the IKKT model
1 (although we obtain agreement up to order of magnitude for the values

of N ≤ 96 that we explored). We also find it very difficult to explore the

critical region near the phase transition point µc = 0.527 . . . for N > 8

since |wi(x)| becomes very small. Since RMT is a schematic model of finite

density QCD, we expect that the factorization method will be useful to

explore the phase diagram of QCD.

In our simulations we find that for certain observables the limits µ → 0,

N → ∞ and N → ∞, µ → 0 are not equivalent. In real QCD, the former is

easy but not the latter. That this situation is possible can already be seen

at the partition function level where Z(µ, N) = eκ[1 + (−1)N+1

N ! γ(N + 1, κ)],

κ = −Nµ2 is equal to 1 and 0 respectively, but it turns out that the same

is true also for observables like ∂
∂µ

〈νR〉0 and wR(x). 〈νR〉, however, is well

defined in this limit as expected. In the thermodynamic limit 〈νR〉0 = µ

for 0 < µ < 1. In Figure 2 we see that this limit is approached like

〈νR〉0 − µ ∼ O(1/N) but only if µ > µc(N). We find that the value of µc

is consistent with µ2
c ∼ 1/N . A circle with radius µc = 1/

√
N contains

only one eigenvalue of the matrix on average. For N ≪ 1/µ2
c we find that

〈νR〉0 = 0. This can be seen clearly from the second plot of Figure 2,

where the distributions ρ
(0)
R (x) for N = 8 peak around zero for µ < µc
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Figure 1. ρR(x) and ρI(x) for µ = 0.2.

and their peaks get closer to µ as µ becomes larger than µc. Therefore

limN→∞ limµ→0
∂

∂µ
〈νR〉0 = 0 6= limµ→0 limN→∞

∂
∂µ

〈νR〉0 = 1. Similarly

we find that limN→∞ limµ→0 wR(x) = 0 6= limµ→0 limN→∞ wR(x) = 1.

Details will be reported elsewhere.
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Figure 2. The difference of 〈νR〉0 from its N = ∞ value and ρ
(0)
R

(x) for N = 8 for
various values of µ.
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