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Abstract. The space of all solutions to the string equation of the symmetric unitary
one-matrix model is determined. It is shown that the string equation is equivalent
to simple conditions on points Vγ and V2 in the big cell Gr ( 0 ) of the Sato
Grassmannian Gr. This is a consequence of a well-defined continuum limit in
which the string equation has the simple form [^, i?_] = 1, with 0> and =2-2x2
matrices of differential operators. These conditions on V1 and V2 yield a simple
system of first order differential equations whose analysis determines the space of
all solutions to the string equation. This geometric formulation leads directly to the
Virasoro constraints Ln (n ̂  0), where Ln annihilate the two modified-KdV τ-
functions whose product gives the partition function of the Unitary Matrix Model.

1. Introduction

Matrix models form a rich class of quantum statistical mechanical systems defined

by partition functions of the form J dM e -jtrV(M\ where M is an N x N matrix and
the Hamiltonian trV(M) is some well defined function of M. They were originally
introduced to study complicated systems, such as heavy nuclei, in which the
quantum mechanical Hamiltonian had to be considered random within some
universality class [1,4].

Unitary Matrix Models (UMM), in which M is a unitary matrix U, form
a particularly rich class of matrix models. When V(U) is self adjoint we will call the
model symmetric. The simplest case is given by V(U) = U + I/1" and describes two
dimensional quantum chromodynamics [5-7] with gauge group U(N). The parti-
tion function of this theory can be evaluated in the large-Λf (planar) limit in which
N is taken to infinity with λ = g2N held fixed, where g is the gauge coupling. The
theory has a third order phase transition at λc = 2 [6]. Below λc the eigenvalues emj

of U lie within a finite domain about α = 0 of the form [ — αc, αc] with αc < π. The
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size of this domain increases as λ increases until the eigenvalues range over the
entire circle at λ = λc.

In the last two years, matrix models have received extensive attention as
discrete models of two dimensional gravity. In this context, the one-matrix Her-
mitian Matrix Models (HMM), in which M is a Hermitian matrix, are the clearest
to interpret since a given cellular decomposition of a two dimensional surface is
dual to a Feynman diagram of a zero dimensional quantum field theory with action
trF(M). In the double scaling limit of these models, the potential can be tuned to
a one parameter family of multicritical points labelled by an integer m. This scaling

n
2m

limit is defined by N going to infinity and λ -• λc with ί = ί 1 \N2m+i and

/ ^ \ 2m

y = 11 — — lJV2m + i held fixed. This requires simultaneously adjusting m coup-
V λcj

lings in the potential to their critical values. At these multicritical points the entire
partition function (including the sum over topologies) is given by a single differen-
tial equation (the "string equation") and can serve as a non-perturbative definition
of two dimensional gravity coupled to conformal matter [8-11]. This multicritical-
ity may also be described by universal cross-over behaviour in the tail of the
distribution of the eigenvalues [12].

UMM have also been solved in the double scaling limit [13-17] and their
general features are very similar to the HMM. At finite N they exhibit integrable
flows in the parameters of the potential similar to the HMM [18-21] and in the
double scaling limit they lie in the same universality class as the double-cut HMM
[20-23]. The world sheet interpretation of the UMM is not, however, very clear
[22]. In view of this it seems worthwhile to explore their structure further.

It is well known [24] that the string equation of the (/?, q) HMM can be
described as an operator equation [P, β ] = 1, where P and β are scalar ordinary
differential operators of order p and q respectively. They are the well defined scaling
limits of the operators of multiplication and differentiation by the eigenvalues of
the HMM on the orthonormal polynomials used to solve the model. The set of
solutions to the string equation [P, β ] = 1 was analyzed in [25] by means of the
Sato Grassmannian Gr. It was proved that every solution of the string equation
corresponds to a point in the big cell Gr ( 0 ) of Gr satisfying certain conditions. This
fact was used to give a derivation of the Virasoro and PF-constraints obtained in
[26, 27] along the lines of [28-31] and to describe the moduli space of solutions to
this string equation. The aim of the present paper is to prove similar results for the
version of the string equation arising in the UMM. It was shown in [32] that the
string equation of the UMM takes the form [^, J _ ] = const., where for the kth

multicritical point 0> and J _ are 2 x 2 matrices of differential operators of order 2k
and 1 respectively. For every solution of the string equation one can construct, with
this result, a pair of points of the Gr ( 0 ) obeying certain conditions. These conditions
lead directly to the Virasoro constraints for the corresponding τ-functions and give
a description of the moduli space of solutions. We stress that the above results
depend solely on the existence of a continuum limit in which the string equation
has the form \β>, 2LJ\ = const, and the matrices of differential operators 3P and Ά-
have a particular form to be discussed in detail in subsequent sections. Our results
do not depend on other details of the underlying matrix model.

The paper is organized as follows. In Sect. 2 we review the double scajing limit
of the UMM in the operator formalism [32]. Since the square root of the specific
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heat flows according to the mKdV hierarchy we note that its Miura transforms
flow according to KdV and thus give rise to two τ-functions related by the Hirota
bilinear equations of the mKdV hierarchy [33-35]. In Sect. 3 we derive a descrip-
tion of the moduli space of the string equation in terms of a pair of points in Gr ( 0 )

related by certain conditions. In Sect. 4 we show the correspondence between
points in Gr ( 0 ) and solutions to the mKdV hierarchy. The Virasoro constraints are
derived from invariance conditions on the points of Gr ( 0 ) along the lines of [28, 29].
This is most conveniently done in the fermionic representation of the τ-functions of
the mKd V hierarchy. Finally in Sect. 5 we determine the moduli space of the string
equation. It is found to be isomorphic to the two fold covering of the space of 2 x 2
matrices (P f J (z))5 where Pίj(z) are polynomials in z such that P01(z) and Pιo(z) are
even polynomials having equal degree and leading terms and POo(z) and Pu(z) are
odd polynomials of lower degree satisfying the conditions POo(z) + Pn(z) = 0

An alternative approach to studying the space of solutions to the string
equation of HMM and UMM has been given in [36, 37]. The author has
constructed an interesting generalization of the Burchnall-Chaundy-Krichever
(BCK) theory for non-commuting operators P and Q such that [P, β ] = 1.

2. The Symmetric Unitary Matrix Model

In this paper we will study the UMM defined by the one matrix integral

ZU

N = JD£/exp j - j Tr V(U + ^ T ) f > (1)

where U is a 2N x 2AT or a (2JV + 1) x (2iV + 1) unitary matrix, DU is the Haar
measure for the unitary group and the potential

V(U)= X 0 kt/*, (2)

is a polynomial in U. As standard we first reduce the above integral to an integral
over the eigenvalues [6, 38] zf of ί/ which lie on the unit circle in the complex
z plane,

where Δ(z) = Y\k<j (zk — Zj) is the Vandermonde determinant. The Vandermonde
determinant is conveniently expressed in terms of trigonometric orthogonal poly-
nomials [39],

Cn{z) = zn ±z~n + X α^-iίz"" 4 ± z~n + i)
ί = l

= ±c±(z-1), (4)

where for U (2N + 1) n is a non-negative integer and zmax = n and for U(2N) n is
a positive half-integer and z'max = n — \. The polynomials c*(z) are orthogonal
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with respect to the inner product

- j V(z + z*) }c:(z)*c:

The expression for the Vandermonde determinant is

det'

(5)

(6)

where j = 1, . . . , 2ΛΓ, ί = i f, . . . , N - £ for U(2N) and j = 1, . . . , 2ΛΓ + 1,
ί = 0,1, . . . , N for U(2N + 1) (where the line cό(z) = 0 is understood to be
omitted). Then the partition function of the model is given by the product of the
norms of the orthogonal polynomials [19]

+ -

n

In constructing the continuum limit of the UMM we will also need the orthonor-
mal functions

(8)

such that

πΛ

+ (z), n*(z)> = ( j ) ^ - % : ( z ) * π ; ( z )

<πn

+(z),π-(z)> = 0 . (9)

The action of the operators z ± = z ± 1/z and zdz on the π*(z) basis is given by
finite term recursion relations [19, 32]

z + π±(z) = y/ ^+1(z) - r±π±(z) + v ^ π * . t ( z ) ,

z-πί (z) = sM7,n:+!(z) - qi , ^π+ (z) - Jθίπ^t(z) ,

JV *

22 Λ

N k

T̂ Σ (^k.-ftί-rίz),
(10)
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The double scaling limit corresponding to the kih multicritical point is defined by

Aί-> oo and λ->λc, with t = ί 1 - — jN2fc + i5 j ; = ( 1 - - JAΓ2/c + i held fixed. It

was shown in [32] that the operators z+ and zdz have a smooth continuum limit
given by

2 1

(Π)

where ^+ are given by

0 d +

d-v 0 ) '

+ v)(d -v) 0

0 (d - v)(d +

= Ά1- , (12)

and ^ f c by

o ) .

Here d = d/dx and x = t + y. The scaling function v2 is proportional to the specific
heat — d2 In Z of the model. The operators Pfc are differential operators of order 2k.
The same assertions hold if we introduce sources t2k + i(ti = x) and deform the kih

multicritical potential Vk to Vk(z) - Σihi + i Kz(z)AΓ2(fc-ί)/2/c+1. From lzdZiz.~\
= z+ it follows that

[^*,<2-] = l , (14)

where J _ has the form (12) and ^ f c has the form (13). We stress here that this
equation holds for the system perturbed away from the multicritical points as well
as exactly at multicriticality. Our main aim is to study Eq. (14) - the string equation
for the UMM.

For completeness we will present here some information about the solutions of
(14) that was obtained in [32] (or follows from the same analysis). Most of these
facts will also follow from the results of Sects. 3-5; the reader may go directly to
these sections.

It is proved in [32] that P k are given at the kth multicritical point by

P* = P* - x , (15)
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where

Pk = ak

ι{(d + v)l(d - v)(δ - υ)f~ll2}+ , (16)

and a,-1 = 2(2k + l)£f = 1 ( - 1)< P ^ ^ ^ ^ j + 1 } Here ¥>+ denotes the

differential part of a pseudodifferential operator Ψ. One can give the corresponding
expression P = — ] [ ^ i (2/ + l)ί2 i + iP/ — x for perturbations from the kth multi-
critical point. These expressions can be used to get an ordinary differential equa-
tion for the specific heat v in the form

®Rk[u] = akυx, (17)

where 3) = δ + 2v, u = v2 — υ\ and #fc[w] are the GeΓfand-Dikii potentials de-
fined through the recursion relation

\klύ]9 K o M = ^ (18)

In the non-critical model the analogous equation is

X ( 2 / + l ) ί 2 I + 1 ® Λ I [ i i ] = - t ; x . (19)

The equation \_zdz,z+~\ = z_ in the continuum limit becomes [ ^ , ^ + ] = 2J_
and is consistent with the relation Ά2- = Ά+.

Equation (17) is closely related to the mKdV hierarchy. Indeed, by slightly
modifying the calculations of [22, 23], one can show that v flows according to the
mKdV hierarchy

^ \ . (20)

By introducing scaling operators

<σk) = -^—lnZ (21)

one can show that

<σkσoσoy = 2υdSRklύ] . (22)

Then <σoσo> = - v2 and <σkσoσo> = - ί ^ + i <σoσo> imply Eq. (20).
ό

If υ flows according to mKdV, then the functions u1 = v2 + v' and
u2 = u = v

2 — v' will flow according to KdV, being related to v by the Miura
transformation. The flows ofu1 and u2 have associated τ-functions τx and τ 2 such
that

Mi = - 2a2 In Ti, w2 = - 2δ2 In τ 2 . (23)

Then

v = d\n-. (24)
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The Miura transformation ux = v2 + vf yields the simplest bilinear Hirota equa-
tion of the mKdV hierarchy [33-35], namely

D2

τi τ 2 = τ ϊ τ 2 - 2τ\τ'2 + τγτ'ί = 0 , (25)

where D denotes the Hirota derivative. The structure of this hierarchy will be
examined further in Sect. 4. Note that (24) shows that the partition function Z of
the UMM is given by

Z = τrτ2 (26)

with the two mKdV τ functions being related by (25).

3. The Sato Grassmannian

The partition function of the UMM was shown in Sect. 2 to be the product of two
mKdV τ-functions τx and τ2. As will be explained in Sect. 4, any τ function that can
be represented by a formal power series corresponds to a point of the big cell of the
Sato Grassmannian Gr ( 0 ) . It will be shown that the mKdV flows can be described
by the flows of two points Vu F2eGr ( 0 ) that are related by certain conditions
preserved by the flows. The string equation will impose further conditions that will
pick out a unique pair (Vί9 V2\ It will further impose constraints on the τ-
functions, which turn out to be the expected Virasoro constraints [22, 23]. The
treatment described here follows closely that for the case of the HMM [25-31].

Consider the space of formal Laurent series

_^ anz
n, an = 0 for n > 0

I n

and its decomposition

where H+ = {Σn^o anz
n,an = 0 for n 5> 0}. Then the big cell of the Sato Grassman-

nian Gr ( 0 ) consists of all subspaces V a H comparable to H+, in the sense that the
natural projection π+: V-> H+ is an isomorphism.

Consider the space Ψ of pseudodifferential operators W= Σi^k Wi(x)δ\ where
the functions wt(x) are taken to be formal power series (i.e. Wj(x) = J j ^ o w&χk >
wik = 0, k P 0). £Fis then a pseudodifferential operator of order k. It is called monic
if Wfc(x) = 1 and normalized if wfc_i(x) = 0. The space Ψ forms an algebra. The
space of monic, zeroth-order pseudodifferential operators forms a group c§.

There is a natural action of Ψ on H defined by

xmdn: H-+H

Then it is well known [40] that every point Ve Gr ( 0 ) can be uniquely represented in
the form V = SH+ with Se^. This will imply that for every operator J _ we can
uniquely associate a pair of points Vu V2e Gr ( 0 ) .
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(27)

(29)

(30)

The existence of SγE^ follows from the general fact [41] that for every monic
normalized pseudodifferential operator if of order n there exists an S such that
S&S-1 = dn.

Given S l 5 one can determine S2 from

S^d + v) = dS2 .

By taking formal adjoints of (29) and (30), it is easy to show that 5X and S2 be
made simultaneously unitary. Indeed, from (30) we obtain

Indeed, consider ,

where

Then

which imply that

Si and S2

* = (ι

SΛd2-

s2(d2 -

E<$ such that

SI.

> i 0

S 2 ( δ -

«i)Sf

M2)52-

), I- =

\-v)Sϊ1 =

-υ)ST1 =

1 = d2 u2

•>

(a o)

d,

8,

:=v2 + v'

, = v2-v'

, (31)

where / is arbitrary. Similarly S2S\ = g{d2). But since (27) implies

then

o)

0 α(32

gives

dg =fd ,

3/= f̂3 ,

or, f=g. Therefore Sx and S2 can be simultaneously chosen to be unitary, i.e.
Si Si = 1 and S2S

f

2 = 1.
Since F c Gr ( 0 ) is given uniquely by V = SH+, the operator i>_ determines

two spaces V1=S1H+ and V2 = S2H+. Conversely given spaces Vx\ and V2

determine Ά _ uniquely. The operator J _, however, is a differential operator and
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Vl9 V2 cannot be arbitrary. Indeed,-since every differential operator leaves H +
invariant, we obtain

I' P\ J_ i Λ U r— W ^ ^ C - 1 P C ZJ r- U
\O T* V)Γl + CZ tϊ + O O i OkJ2 i l .)- CI / I +

odV2 c Vί

- Vi (33)
Similarly, zVιaV2.

The string equation will impose further conditions on Vγ and V2. After trans-
formation with the operator S Eq. (14) becomes

ΓSp o) l — i c\A\
L (k) ? — J — 5 V /

where # ( k ) = S^S'1. The solution to (34) is

0 - x

o ' (35)

which gives P(k) = Sϊ1(-x -\-fk(δ))S2 and P}k) = S^1( - x +fk(d))S1. Consis-
tency requires therefore that — x + fk(d) must be self adjoint fk(d) = fk(d2). For the
kth multicritical point P(fc) is a differential operator of order 2k. Therefore
fk(d2) = d2k + . . . . By using the freedom to redefine St by a monic, zeroth-order,
pseudodifferential operator R = 1 +Σi^1rid~i with constant coefficients rh it is
easy to show that all negative powers in fk(d2) may be eliminated. The proof shows
that all powers below d ~1 can be eliminated by R, and a δ " 1 term is forbidden by
self-adjointness. Therefore

(36)

By Fourier transforming, the action of Φ on H is represented by

fc) h A ^fc), where Ak = — + ^ (xtz
2i and αf = const . (37)

dz ί = 0

Given the constants ach we can calculate the operator P ( k ) . Since
(3 - t;)(δ + ί;)52"

1 = 5 2 implies S 2[(δ - υ)(d + ι;)] ί" 1 / 2S 2- 1 = δ 2 1 ' " 1 then using
(δ + t;)S2 x = 3 we obtain

Sx(d + ϋ)[(3 - v)(d + ϋ)] '- 1 / 2 S2 ' = ^ 2 ί (38)

Transforming back to H+ we obtain

i = 0

(δ + i ; ) ] ' " 1 ' 2 . (39)
i = l

Comparing with (16) and since Sj" 1x5 2 = x + Σi^iqi{x)d~\ we conclude that at
the kth multicritical point, ak = 1 and αf = 0 for i < k. Moreover, by perturbing
away from the multicritical points we see that

(40)
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The requirement that Θ> be a differential operator is equivalent to the condi-
tions Ak Vι c= V2 andAk V2 c: Kj. The space of solutions to the string equation is the
space of operators J _ such that there exists &{k) with [^(fc), J _ ] = 1. We conclude
that this space is isomorphic to the set of elements Vx, V2 <= Gr ( 0 ) that satisfy the
conditions:

zVx c K2 zF 2 cz Ki

ΛkV1^V2 AkV2^V, (41)

for some Ak = d/dz + X^=o α i z 2 '

It is now easy to show that the string equation compatible with the mKdV
flows (20). We will show in the next section that the mKdV flows for the scaling
function v are equivalent to the condition

l i ( i = l , 2 ) . (42)

Then Vt(t) = exp{Σkt2k+1z
2k+ι} V, = y(t,z)Vt and (41) imply

zγ{z,t)V1cγ(t,z)V2=>zV1(t)cV2(t)

Ak(t)y(z, t)VlCy(t,z)V2^Ak{t)Vx(ί) c V2(t), (43)

where

A W = lAky-1 = A - Σ ( 2 ' + I)ί2<+iz2 ί (44)
I

and analogous equations with Vι and F2 interchanged. This is clearly consistent
with (40).

From (41) we see that z2, zA and A2 leave Vly 2 invariant. In the next section we
show that this fact implies Virasoro constraints for the τ-functions associated with
the mKdV flows of the UMM.

4. The mKdV τ-Functions and the Virasoro Constraints

In this section we will describe the τ-function formalism for the mKdV system and
give a derivation of the Virasoro constraints on the τ-functions of the UMM. These
will be derived from the invariance conditions (41) on the spaces Vx and V2

following the lines of [28, 29] for the HMM. The idea is to transform the Virasoro
generators into fermionic operators in the fermionic representation of GL(co) using
the boson-fermion equivalence. Then using the correspondence between GL(oo)-
orbits of the vacuum and Gr ( 0 ), annihilation of the τ-function by the Virasoro
constraints Ln is shown to be equivalent to the invariance of F e G r ( 0 ) under the
action of operators z2nAκdY. In [25, 30], it was shown that .4Kdv was nothing but
the operator P of the HMM acting on Gr ( 0 ), and the Virasoro constraints were
proved from the string equation. We summarize below these results and derive the
Virasoro constraints for the UMM from the conditions (41).

First we introduce the fermionic representation of GL(oo) on the Fock space
F of free fermions. The fermionic operators are defined to satisfy the anticommuta-
tion relations

(45)
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The vacuum |0> satisfies

φi\0} = 0 for i > 0, ^J|0> = 0 for i ^ 0 , (46)

and the states (m > 0)

m> = φl . . . φ\\0) , I - m> = lA-m+i *Ao|0> (47)

are the filled states with charge m and — m respectively. The operators φj and φt

have been assigned charges 1 and — 1 respectively and the vacuum |0> charge 0.
The normal ordering is defined by

t t t ί ΦlΦi ί > 0
: φjφj:= φjφj — (φ}φjy = < x (48)

Then the fermionic representation of the algebra gl(co) is defined by1

|χ>GF (49)

and of the group GL(oo) by

= ((Ψ'gUΨΌh (gΨUoΨh • • • ) ! - m> (50)
form > Osuch that (φfg)-j = φ^jϊorj > m. In (50), geGL(oo) and (φfg)i = φ]gβ
and (gφ)i = gijφj The above representation conserves the charge and therefore
preserves the decomposition

F = 0 Fim) ,
meZ

where F{m) is the space of states with charge m. The first step in order to establish
the boson-fermion correspondence is to define the current operators

Jn=Σ ''Ψl-rΨr' neZ (51)
reZ

which satisfy the bosonic commutation relations

lJm,Jn~]=mδm,-n. (52)

Then we define an isomorphism σ: F —> B where the bosonic Fock space
B = ®mezBim)^Cltut2, . . . ^ t t , ! * - 1 ] of polynomials in ί 1 ? ί 2 , . . . ,\u,u~x by
the requirement

σ ( | m » = ttm, σ Λ σ " 1 = — (n ^ 0) σ ^ σ " 1 = - nt-n (n < 0) . (53)
dtn

Then the state \χ}eF is represented in 5 by

τ*(t;u,u-1)= X i ι » < m | e Σ , ^ Λ | χ > = ^ κ w τ £ ( ί ) . (54)
meZ meZ

Note that σ = 0 m e Z σ m , where σm: F(m) -• B(m) s κ m C [ ί 1 , f2, . . . ] and

τ(ί) =

1 Note that this representation of gl(co ) and GL(oo) is equivalent to the infinite wedge repres-
entation [34]
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Then one observes that if the state \g}0 belongs to the GL(oo) orbit of the
vacuum (i.e. \g)0 = g\0) for some geGL(co)), then ΣjezΨ]\g>o®Ψj\9>o = 0
leads to the bilinear Hirota equations for the τ-functions of the KP hierarchy (see
[33-35] for details). The KP τ-function belongs to the GL(oo) orbit of the vacuum
and is given by

τ = <0|eΣP>=itΛ^|0>eGL(oo) l . (55)

Similar considerations apply for the kth modified KP (mKP) hierarchy. This is
defined by the equation Σjezt/ΊlgX ® ΦJ\Q)O = 0, where \g}k belongs to the
GL(oo) orbit of the state \k} of (47). Kac and Peterson [33] showed that this is
equivalent to the mKP τ-function τ(t) = τk(t) © τo(ί) lying on the GL(oo) orbit of
|fc>©io>.

One can go further and observe that the Kac-Moody algebra of sln (thought of
as sln(n, C[u, w" 1])) when embedded in gl(oo) has irreducible highest weight
representations on the space B(n) = φm^ΛJBβ?, where Bffl = C[tj\j Φ 0 modn]
cz B{m\ Therefore one can restrict the mKP (respectively KP) hierarchies and

obtain the so-called n-reduced mKP (respectively KP) hierarchies. Then one can
show [33] that the τ-function τ(M) = @k = h^k belongs to the SLn orbit of the sum of
the highest weight vectors 0J," = ol m . We are mainly interested in the second
reduced mKP hierarchies. Then the simplest bilinear Hirota equations give for
Ui= — 2d2\nτh i = 1, 2 and v = Inτ2/τi Eqs. (23) and (24), and we obtain the
mKdV hierarchy.

Now we want to establish the relation between elements of Gr ( 0 ) and fermionic
states. Consider KeGr ( 0 ) spanned by the vectors {φi} (i = 0,1, 2, . . .), where
Φi = Σfcez Φi,kzkεH. Associate to every φiG V a fermionic operator φ^lφβ by

Ψ'ίΦi~]= Σ Φt.kΨt (56)
fceZ

and to every K e G r ( 0 ) the state \v} belonging to the GL(oo) orbit of the vacuum
and such that

^ t C ^ ] | ^ > = 0 V i , (57)

where V is spanned by the functions {φi}. Then because bilinear fermionic
operators

ά^Σ .φlatjφj: (58)

satisfy

k k

we can associate to them operators a acting on H by

ah(z) = Σ(Σakihήzk (h(z)eH). (60)

Then if

άγ<r-±a\ and α2<-»α2 then

[ α 1 ? α 2 ] <-̂  [ α l 5 α 2 ] . (61)
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Moreover, one can prove [28, 29] that if \v} corresponds to F e G r ( 0 ) , then

ά\v) = const. |t>> o α F c F . (62)

The proof follows immediately from the remark that [α, ψ^{φ)~\ = ψHaφ) (see
(59)). Thus if ά\v) = const.|t;> and φeV, i.e. ψHφ)\v} = 0, then φ^(aφ)\v)
= (άψ^(φ) — φ1f(φ)ά)\v) = 0 and hence aφe V. In other words aV a V. In a sim-

ilar way one can establish the implication in (62) in the reverse direction. From the
above discussion we see that if F 1 > 2 are to describe mKdV flows then they should
correspond to states |t;1>eGL(oo) |0> and \v2}eGL(oo) |1>. Then since |

Σ or

i > t , (63)
dt 2fe+l

Eq. (60) yields (42).
Consider the Virasoro operators

p= — oo

a c t i n g o n t h e τ-functions a s s o c i a t e d wi th t h e s tates \g}i-ι,

τ i ( t ) = 0'-— 1 1 e x p < Σ t p J p > \ g } i - 1 j = l , 2 . (65)

Then shift the times £21+ I -> *2i+ I + oίi/(2i + 1) for i ^ fc, where the αf are defined in
(37). Then

τ f(ί) -> τ (ί) = <i — 1 |exp

V αP r _ V

= Ln+ Σ α p J 2 ( M + / 7 ) + 1 . (66)

In [28, 29] it was shown that the fermion operators L'n correspond via (60) to the
operators

1 1 f A k \

Then, because of (62), invariance of Vli2 under z2 π + 1y4 (see (41)) implies that the
τ-functions Tt are annihilated by the LM's for n ^ 1 and

L o τ t = μτf . (68)

The constant μ is an arbitrary parameter. Such a parameter does not appear for
Ln(n Ξ> 1) by closure of the Virasoro algebra. As pointed out in [23] it is the same
for the two τ-functions and it cannot be determined by the closure of the algebra
since, contrary to the HMM, L-γ is absent. If one includes boundary conditions
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then there exists a one parameter family of solutions to the string equation with the
correct scaling behaviour at infinity [42]. It has been suggested in [23] that the
parameter of such a particular solution is related to μ. The Virasoro constraints are
then those of a highest weight state of conformal dimension μ. Although L-λ is
absent one should bear in mind the additional constraints arising from the
interrelation of τ1 and τ 2 determined by Eq. (41).

5. Algebraic Description of the Moduli Space

In this section we attempt to give a complete description of the moduli space of the
string equation (14). As already mentioned, the space of solutions to (14) is
isomorphic to the set of points Vu V2 of Gr ( 0 ) that satisfy the conditions (41).
Therefore we will start by describing the spaces V1, V2.

First choose vectors φi(z), φ2(z)e Vu such that

φι(z) = 1 + lower order terms, φ2(z) = z + lower order terms .

Then the condition z2 Vγ a Vx and π + (Vι) = H + shows that we can choose a basis
for Vl9

Since zV1 c V2 and π + (V2) ^ H+ we can choose a basis for V2 to be

where φ(z) = 1 + lower order terms. Using zV2 cz V1 we have zφ = ocφi + βφ2.
Choose φu φ2 such that zφ = φ2. Then we obtain the following basis for Vu V2

V2:φ,zφ,z2ψ,z3φ,... . (69)

Then it is clear that φ, φ specify the spaces Vί9 V2. Using the conditions AVλ cz V2

and AV2 a Vx we obtain

j z +fk(z2)\φ = POo(z)φ + Poi(z)φ ,

j z +Λ(z2))ψ = P10(z)φ + P^)Φ (70)

The polynomials POo(z) and Pu(z) are odd whereas POι(z)9 Pio(z) a r ^ even.
Comparing both sides of (70) we find that because deg(/fc) = 2/c,
deg(PoΛz)) = deg(P1 0(z)) = 2k and deg(Pn(z)), deg(POo(^)) < 2k and that the
coefficients of the leading terms of P O i ( z ) and Pio(z) are equal to αk.

Equations (70) can be rewritten in the form

Dχ = B2k(z)χ , (71)
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where Z = ( J ) ,

%Z I ΓQQ{Z) — J k \ Z ) *Q1\Z)

( 7 2 )

The requirement that φ, φ be solutions of the form 1 + (lower order terms), rather
than exponential, puts further constraints on the matrix B2k(z). It requires that the
eigenvalues λ(z) of B must vanish up to Θ(z~2\ i.e λ(z) = Σ ^ i AjZ"'"1. Indeed
then χ ~ t\p\z λ(z')dz' ~ exp — (/U/z) ^ 1 — /Ijz"1 + . . . , as desired. But then
det£ 2 / c(z)is of Θ(z~4) and

fik(z2) = Ί(POO(Z) + Pii(z)) ± ViίPooW + Pii(z))2 -Δ + Θ(z~*) , (73)

where A(z) = P00(z)P11(z) — P 0 i(z)P 1 0 (z). Since/(z2) is an even function of z, the
odd parity of P00(z) and Pu(z) determine that P00(z) + Pu(z) = 0.

Conversely given a 2 x 2 matrix {Pij(z)) with POi (z), Pιo(z) even polynomials of
degree 2/c and POo(z)> Pn(z) odd polynomials of degree < 2/c such that
Poo(z) + Pn(z) = 0, we will show that we obtain exactly two solutions to the
string equation (34). The eigenvalues 2 ( 1 '2 )(z) of ( P 0 (z)) are given by

λ^2\z)= ±J-Λ{z) (74)

and λ(i)(z) = Σkj=-°oλfz2j (ί = 0,1). Then the matrix B2k of (72) with

k Γ0 m>0
f ^(72\ = V /γ( ί)72m (i) _ i(i) _ ) w = w /7C\

φ θ at least for 0 > mm = — oo

will have determinant at most of Θ(z 4 ) . Then the system (70) will have solutions
φ(z) and φ(z) of the form φ(z\ φ(z) = const. + lower order terms. We can set the
constant to one by requiring that the leading terms of the polynomials P01(z) and
P10{z) are equal. Since we know from the discussion at the end of Sect. 3 that the
m < 0 terms of the operator A can be gauged away, we see that each eigenvalue
λ{ί)(z) specifies a unique solution to the string equation (34).

Hence the space of solutions to the string equation (14) is the two fold covering
of the space of matrices (P^ (z)) with polynomial entries in z such that P01(z) and
P 1 0 (z) are even polynomials having equal degree and leading terms and POo(z) and
P\ι{z) are odd polynomials satisfying the conditions P00(z) + Pίl(z) = 0 and
d e g P o o 0 0 < d e g P O i ( 4
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