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New perspective on matter coupling in 2D quantum gravity
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We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian
quantum gravity exhibits~two-dimensional! flat-space behavior when coupled to Ising spins. The evidence
comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-
matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model
is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much
‘‘smoother’’ critical behavior.@S0556-2821~99!08720-2#

PACS number~s!: 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc
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I. INTRODUCTION

At the end of the twentieth century, the nonperturbat
quantization of gravity remains an elusive goal for theore
cal researchers. There is not even a consensus on how
problem should best be tackled. For example, conside
pure-gravity approaches, we have on the one hand Euclid
path-integral methods, which are close to usual formulati
of ~nongenerally covariant! quantum field theories and we
suited for numerical simulations. On the other hand, in
nonical quantization approaches it is—at least in principle
easier to address questions about the behavior of sp
three-geometries, but the complicated structure of the c
straints tends to lead to computational difficulties.1 Unfortu-
nately, very little is known about the relation between t
covariant and canonical approaches. In part this is due to
‘‘signature problem’’ of the path-integral formulations: th
sum over all space-time geometries is usually taken o
Riemannian and not over the physical Lorentzian~pseudo-
Riemannian! four-metrics modulo diffeomorphisms. Th
problem of how to relate the two sectors by an appropria
generalized Wick rotation remains unresolved.

Our aim is to investigate the possible consequences
taking the Lorentzian structure seriously within a pa
integral approach. In order to gauge the difficulties this
volves and to circumvent technical problems, we first a
dressed the issue in two space-time dimensions, where t
already exists a well-understood theory of~Euclidean! quan-
tum gravity, namely, Liouville gravity. In@1#, we proposed a
new, Lorentzian model of 2D quantum gravity, obtained

*Email address: ambjorn@nbi.dk
†Email address: konstant@nbi.dk
‡Email address: loll@aei-potsdam.mpg.de
1Alternatively, one could embed quantum gravity in a larger, u

fied theory such as string theory or~the as yet nonexistent! M
theory. However, these are still far from giving us any detai
information about the quantum gravity sector.
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taking the continuum limit of a state sum of dynamica
triangulated two-geometries. The Lorentzian aspects of
model were twofold: First, the sum was taken only ov
those two-geometries which are generated by evolvin
one-dimensional spatial slice and which allow for the intr
duction of a causal structure. Second, the Lorentzian pro
gator was obtained by a suitable analytic continuation in
coupling constant. The first aspect turned out to be the c
cial one, leading to a continuum theory of 2D quantum gra
ity inequivalent to the usual Liouville gravity. This was
shown in @1#, where both the loop-to-loop propagator an
various geometric properties of the model were calcula
explicitly. The Hausdorff dimension of the quantum geom
etry is dH52 and points to a much smoother behavior th
that of the Euclidean case~wheredH54!.

However, we must emphasize thatdH52 doesnot imply
a flat geometry. The model of Lorentzian gravity defined
@1# allows for arbitrarily large fluctuations of the spatial vo
ume from one time slice to the next. This is illustrated
Fig. 1, which shows a typical surface generated by the Mo
Carlo simulations, to be described in Sec. III. The length
the compact spatial slice fluctuates strongly with time~point-
ing along the vertical axis!. Using the results of@1#, one
easily derives that in the thermodynamic limit and for lar
times the average spatial volumeL and fluctuations aroundL
behave like

^L&5
1

AL
and ^DL&5A^L2&2^L&25

1

A2L
, ~1!

respectively, for a given cosmological constantL. This dem-
onstrates that even in the continuum limit the fluctuations
large and of the same order of magnitude as the spatial
ume itself.

We managed in@1# to further trace the difference betwee
the two quantum theories to the presence or absence o
called baby universes. These are outgrowths of the t
geometry, giving it the structure of branchings over bran
ings, which are known to dominate the typical geome

-

©1999 The American Physical Society35-1



n
ti
-
n
-
e
e
m
n
g

a
e
by
oe

e
a
or
o
iz

y,
in
f t
re

th
t
ar
m

e
lin

e
er
in-

la-
u-

e-
the
the

ext
th
ture
t-
o-
ath
ion
gu-

ti-
er-

y,
to

lity
is

an

b-
be

y a
al

iza-

ed
ing

s
be
r is
ed

ed

s
vity
for
ion
.
be-
-
ions
his
are
tion

ty
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contributing to the Euclidean state sum. On the other ha
in the Lorentzian state sum, one can suppress the forma
of such branchingswith respect to the preferred spatial slic
ing ~which is not present in the Euclidean picture, where
directions are distinguished!. There is also a physical moti
vation for suppressing the generation of baby univers
since the associated~discrete! geometries can usually not b
embedded isometrically in a smooth Lorentzian space-ti
If nevertheless onedid decide to generalize the evolutio
rules of the Lorentzian model to allow for such branchin
~and keep only a weaker notion of causality; cf.@1#!, one
would rederive the usual Euclidean Liouville results. In wh
follows, when talking about ‘‘the Lorentzian model,’’ w
will mean the unmodified model without branching ba
universes, i.e., the model of 2D quantum gravity that d
not lie in the same universality class as Liouville gravity. W
also would like to point out that from the point of view of
canonical quantization the Lorentzian model is much m
natural. The inclusion of topology changes of space int
canonical scheme would require a so-called third quant
tion of geometry.

In Liouville gravity, matter couples strongly to geometr
perhaps even too strongly in the sense that the comb
system becomes inconsistent when the central charge o
~conformal! matter exceeds 1. Arguments have been p
sented which link the strong deformation of geometry to
creation of baby universes@2#. It is therefore conceivable tha
the Lorentzian model of gravity—where baby universes
absent—has a weaker and less pathological coupling to
ter.

In order to understand the behavior of the combin
gravity-matter system, we are considering here the coup
of the gravitational model of Ref.@1# to an Ising model of
spin 1

2, with nearest-neighbor interaction(^ i j &s is j between

FIG. 1. A typical discrete history of pure Lorentzian gravi
with volumeN51024.
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its spinss i561. In @1# we made a careful analysis of th
implications of the Lorentzian signature for the sum ov
space-time metrics. The most straightforward way of obta
ing the continuum limit consisted in performing the calcu
tions in the discretized model with purely imaginary co
pling ~corresponding to Euclidean signature! and only
afterwards ‘‘rotating back’’ to the Lorentzian sector. Mor
over, it turned out that certain simple properties, such as
fractal dimension of space-time, were independent of
analytic continuation.

We will apply the same philosophy in the present cont
by analyzing the Ising model coupled to 2D gravity wi
coupling constants corresponding to the Euclidean signa
sector. Nevertheless, we will continue to talk about ‘‘Loren
zian’’ gravity coupled to matter, because the choice of tw
dimensional Euclidean geometries contributing to the p
integral is dictated by the requirement that after the rotat
to Lorentzian signature they should be causal and nonsin
lar. The ‘‘matter observables’’ we will consider are the cri
cal exponents for the Ising model, characterizing the und
lying c51/2 fermionic continuum model coupled to gravit
which are not expected to change under the rotation
Lorentzian signature. In order to determine the universa
class of the interaction between matter and gravity, it
therefore convenient to work entirely within the Euclide
sector of our Lorentzian gravity model.

For fixed regular two-dimensional lattices and in the a
sence of an external magnetic field, the Ising model can
solved exactly in a variety of ways~see, for example,
@3,4,5#!. The partition function~for the square lattice! was
found by Onsager. Its critical behavior is characterized b
logarithmic singularity of the specific heat and the critic
exponents near the Curie temperature,a50, b50.125, and
g51.75, for the specific heat, the spontaneous magnet
tion, and the susceptibility, respectively@5#.

For the case of the usual Euclidean 2D gravity, describ
by an ensemble of planar random surfaces, coupling to Is
spins was first considered in@6#, where an exact solution wa
obtained with the help of matrix model methods. It could
shown that in the presence of gravity, the matter behavio
‘‘softened’’ to a third-order phase transition, characteriz
by the critical exponentsa521, b50.5, andg52 @7#. On
the other hand, the geometry is ‘‘roughened,’’ as exemplifi
by the increase from21/2 ~pure 2D Liouville gravity! to
21/3 of the entropy exponentgstring for baby universes on
manifolds of spherical topology.

It is not entirely straightforward to apply the method
used to obtain these exact solutions to the Lorentzian gra
model. For example, one can write down an expression
the transfer matrix generalizing that of the Onsager solut
by imposing a length cutoffl 0 on the length of spatial slices
However, a major stumbling block to understanding the
havior of its eigenvalues asl 0→` is the fact that as a con
sequence of the gravitational degrees of freedom, transit
between spatial slices of different length are allowed. T
makes the use of Fourier transforms problematic, which
an essential ingredient of this and other algebraic solu
5-2
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NEW PERSPECTIVE ON MATTER COUPLING IN 2D . . . PHYSICAL REVIEW D60 104035
schemes. Moreover, the Hilbert space dimension for the
crete, finite model is given by( l 51

l 0 2l , which grows rapidly
with l 0 .

In the absence of an analytic exact solution,2 one way to
try to extract information about the matter-coupled mode
by performing a series expansion of the partition functionZ
at high or low temperature, or of suitable derivatives ofZ.
For flat, regular lattice geometries, these have been stu
extensively since the early days of the Ising model. It is w
known that the high-T expansion, in particular that of th
magnetic susceptibilityx at zero field, is well suited for ob
taining information about the critical behavior of the theo
We will show that the same is true for the coupled gravi
Ising model, after taking into account some peculiarities
do with the fact that we have an ensemble of fluctuat
geometries instead of a fixed lattice. In the limit of lar
lattice sizeN, there is a well-defined expansion in terms
uªtanhb, where the couplingb is proportional to the in-
verse temperature, whose coefficients can be determine
diagrammatic techniques. Given a plausible ansatz for
singularity structure of the thermodynamic functions, o
can then extract estimates for the critical point and criti
exponents from the first few terms of such an expans
These results are corroborated by performing a Monte C
simulation of Lorentzian gravity coupled to the Ising mod
Apart from being in good agreement with the high-T expan-
sion, the simulations also allow us to measure the quan
geometrical properties of the model.

II. HIGH- T EXPANSION

Recall the usual high-T expansion of the Ising model on
fixed lattice of volumeN, with partition function

Z~b,N!5 (
$s i561%

expS b(̂
i j &

s is j1H(
i

s i D , b5
J

kT
,

~2!

where the sum is taken over all possible spin configuratio
andJ.0 denotes the ferromagnetic Ising coupling. We w
only consider the case of vanishing magnetic field,H50.
The Ising spins are located at the lattice vertices, labeled
i , j P1, . . . ,v. A convenient expansion parameter at hi
temperature isuªtanhb, which we can use to reexpress

ebs is j5~11us is j !coshb. ~3!

2A matrix model of Lorentzian gravity coupled to Ising spin h
been formulated recently. Its analysis is the subject of a forthc
ing publication@8#.
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Substituting Eq.~3! into Eq. ~2!, the partition function be-
comes

Z~b,N!5~coshb!s(
$s i %

F11u(̂
i j &

s is j1u2(̂
i j &

(̂
kl&

~s is j !

3~sks l !1¯G ~4!

5:2v~coshb!sS 11 (
n>1

VnunD , ~5!

with v denoting the number of vertices ands the number of
nearest-neighbor pairs~i.e., the number of lattice links!. Note
that the terms;un in Eq. ~4! are only nonvanishing if every
s i in s i 1

s i 2
¯s i n

appears an even number of times. Rep

senting spin pairs (s is j ) by drawing a link betweens i and
s j on the lattice, this is equivalent to the following stat
ment: nonvanishing contributions toVn in Eq. ~5! corre-
spond to figures of lattice links which are closed polygo
with an even number of links meeting at each vertex. T
coefficientVn simply counts the number of such figures
order n that can be put down on a given lattice and w
depend on the lattice geometry~triangular, square, etc.!. It is
a polynomial in the variableN.

Because of the extensive nature of the free energyF(N)
52kT ln Z(N), we must have that (11(Vnun);eN(¯) in
the thermodynamic limitN→`, and we can therefore write
for the partition function per unit volume,

ln Z~b!ª
1

N
ln Z~b,N!5

s

N
coshb1

v
N

ln 21 (
n>1

vn
~0!un,

~6!

wherevn
(0) is obtained by taking the term linear inN in Vn

and settingN51. Note that both connected and disconnec
graphs contribute tovn

(0) . A similar relation can be obtained
for the magnetic susceptibility at zero field,x(N)
5kT(]2/]H2)ln Z(N)uH50. At high temperature, the suscep
tibility per unit volume can be expressed as

x5kTS 11 (
n>1

vn
~2!unD . ~7!

The coefficientsvn
(2) are the exact analogues ofvn

(0) in Eq.
~6!, where the counting now refers to polygon graphs w
two odd vertices~vertices with an odd number of incomin
links!, and all other vertices even~cf. @9#, but beware of the
difference in notation for the number of vertices!.

Since we are primarily interested in the bulk behavior
the gravity-matter system, we will in the following for sim
plicity choose the boundary conditions to be periodic. Th
is, we will identify the top and bottom spatial slices of th
cylindrical histories introduced in@1#. Clearly, this is not
going to affect the local properties of the model. As abo
we will denote the discrete volume, i.e., the number of
angles of a given two-dimensional geometry~with torus to-
pology!, by N. It follows immediately that such a geometr
-

5-3
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J. AMBJO”RN, K. N. ANAGNOSTOPOULOS, AND R. LOLL PHYSICAL REVIEW D60 104035
containsN timelike links, N/2 spacelike links,N/2 vertices,
and 3N/2 nearest-neighbor pairs.

In quantum gravity the volumeN becomes a dynamica
variable. For fixed topology, the only coupling constant a
pearing in the action of pure 2D quantum gravity is the c
mological constant, multiplying the volume term. The par
tion function of the Ising model coupled to 2D Lorentzia
quantum gravity is given by

G~l,t,b!5 (
TPTt

e2lNTZT~b!

5 (
TPTt

e2lNT (
$s i ~T!%

expS b (
^ i j &PT

s is j D , ~8!

where the sum is taken over all triangulationsT with the
topology of a torus andt time slices,NT is the number of
triangles in T, and ZT(b) the Ising partition function~2!
defined onT. Fortunately, the summation over volumes
Eq. ~8! does not lead to additional complications in t
analysis of the thermodynamic properties of the spin syst
since the state sums for fixed and fluctuating volume
simply related by a Laplace transformation. Rewrite relat
~8! as

G~l,t,b!5(
N

e2lNZ̃~b,N,t !ª(
N

e2lN (
TPTN,t

ZT~b!,

~9!

whereTN,t denotes the toroidal triangulations of volumeN
and lengtht in the time direction. Analogous to Eq.~6!, we
expect the matter partf (b) of the free energy density in th
gravitational ensemble to behave in the thermodynamic li
~N→` and t}AN! like3

Z̃~b,N,t !→e@lc2b f ~b!#N1o~N!. ~10!

~For simplicity, we have set the ferromagnetic coupling
J51.! We can now reexpress Eq.~9! as

G~l,t,b!5(
N

e@lc~b!2l#N1o~N!, lc~b!5lc2b f ~b!,

~11!

wherelc[lc (b50)5 ln 2 is the critical cosmological con
stant of pure gravity, which was determined in@1#. Interest-
ing limiting cases areb→0, where2b f (b)5 1

2 ln 2, reflect-
ing the factor 2v in Eq. ~4! ~each spin has two states!, and the
strong coupling regionb→`, where2b f (b)→3b/2 @only
the ground state of all spins aligned contributes to the s
sum ~2!#. The term proportional to the pure gravity cosm
logical constantlc appearing together with the free energy
Eq. ~10! has its origin in the sum over all triangulations:

3Note that with the conventions used in definition~2!, the ground
state energy is23bN/2 and the free energy densityf (b) is nega-
tive.
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15elcN1o~N!. ~12!

A calculation ofZ̃(b,N,t) not only determines the thermo
dynamic properties of the spin system in the presence
gravity, but at the same time describes gravitational asp
of the coupled system, for example, thecritical cosmological
constant lc(b). Conversely, knowledge oflc(b) deter-
mines the spin partition function in the infinite volume limi
The analogue of the high-T expansion~5! in the presence of
gravity is given by

Z̃~b,N,t !5~coshb!3N/22N/2 (
TPTN,t

S 11 (
n>1

Ṽn~T!unD .

~13!

We may reexpress the critical cosmological constant of
combined system as

lc~b!5lc1
3

2
ln coshb1

1

2
ln 21 f̃ ~u!, ~14!

where f̃ (u) is defined in the thermodynamic limit by

(TPTN,t
@11(n>1Ṽn~T!un#

(TPTN,t
1

5eN f̃~u!. ~15!

The coefficientsṼ of the power series now depend on th
triangulationT. When counting diagrams of a given type an
ordern, we must keep in mind that the vertex neighborhoo
do not look all the same, as they do in the case of a reg
lattice, but that the distribution of coordination numbe
~numbers of links meeting at a vertex! is subject to a prob-
ability distribution. The coefficients in the high-T expansion
therefore count theaverageoccurrence of a certain diagram
type in the ensemble of triangulations of a fixed volumeN,
for largeN.

Starting to evaluate the series Eq.~13! order by order, one
immediately notices a qualitative difference from the regu
case. If we had considered a regular triangular lattice~coor-
dination number 6!, the first nontrivial contribution to the
counting of even diagrams would have appeared atn53,
where one obtainsV3(N)5N, coming from closed triangle
graphs. However, when looking at all two-dimensional ra
dom lattices contributing to the sum over geometries in
gravity case, there are geometries which have one or sev
‘‘pinches.’’ A pinch is a spatial slice of minimal lengthl
51, which consists of a single link and a single vertex~see
Fig. 2!. Pinches occur even if the total volume of the tw
geometry is kept fixed, since in the presence of gravity
length of spatial slices is a fluctuating dynamical variable

For the gravitationally coupled Ising model, the lowes
order contribution to the power series inu in Eq. ~13! occurs
therefore already at ordern51. Clearly, such pinching con
tributions will be present at all orders, in both connected a
disconnected diagrams, on top of the ordinary ‘‘bulk’’ co
tributions, coming from diagrams which do not wind arou
5-4
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NEW PERSPECTIVE ON MATTER COUPLING IN 2D . . . PHYSICAL REVIEW D60 104035
the spatial direction of the torus in a nontrivial way. Th
former have no analogue on regular lattices.

Fortunately, it turns out that the pinch contributions a
irrelevant, in the sense that they contribute at a lower or
of N, whereas the bulk contributions inṼn go like Nk, k
>1. This can be seen most easily by considering
Laplace-transformed partition function. Let us begin
evaluating the zeroth-order term of Eq.~13!,

G~ l̃,t !5(
N

e2l̃N (
TPTN,t

1

ª(
N

e2lN~coshb!3N/22N/2 (
TPTN,t

1, ~16!

where for notational brevity we have defined an ‘‘effecti
cosmological constant’’l̃5l2 3

2 ln coshb21
2 ln 2, in accor-

dance with Eq.~14!. The left-hand side of Eq.~16! can be
computed as

G~ l̃,t !5 R dx

2p ix
GS x,y5

1

x
;e2l̃;t D , ~17!

given the explicit form of the propagator derived in Ref.@1#,
to which we also refer for details of notation. The term pr
portional tou1 in the Laplace transform of Eq.~13! is

;u1: (
N

e2l̄N (
TPTN,t

t51
15G~ l̃,t !Ṽ1

norm~ l̃ !, ~18!

where the second summation is over triangulations wit
single ‘‘pinch’’ of spatial lengthl 51. To arrive at the last
expression on the right-hand side, the factorG(l̃,t) has been
pulled out. In terms of quantities derived in@1#, the normal-
ized coefficientṼ1

norm is most easily computed as

Ṽ1
norm~ l̃ !5

( t51
t21Gl̃~x,l 51; t̃ !Gl̃~ l 51,y;t2 t̃ !

Gl̃~x,y;t !
U

x5y50

.

~19!

FIG. 2. A two-dimensional geometry with a ‘‘pinch’’ of length
1.
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We are interested in the behavior of this expression in
thermodynamic limit, which is tantamount to letting the co
mological constant approach its critical value,l̃→l̃c . In
this limit, Eq. ~19! yields simply a constantṼ1

norm→2. This
is a general feature of configurations with one or seve
pinches. For example, generalizing to geometries with
single pinch of lengthl gives a coefficient 2l in the large-
volume limit. As an example of a more complicated config
ration, the normalized coefficient for histories with one pin
of length l 1 and a second one of lengthl 2 becomes, in this
limit,4

;ul 11 l 2:→3 (
k50

min~ l 1 ,l 2!21

~21!k
~ l 11 l 22k21!!

~ l 12k21!! ~ l 22k21!!k!
.

~20!

By contrast, let us now calculate the first bulk contrib
tion, which occurs at orderu3. The contribution toṼ3 is
simply N, from counting the number of triangle graphs in th
2D geometry. Taking the Laplace transform, we obtain

(
N

e2l̃NN[2
]

]l̃
G~ l̃,t ![^N&G~ l̃,t !. ~21!

Evaluating the expectation value ofN in the continuum limit,
one finds

^N&52G~ l̃,t !21
]

]l̃
G~ l̃,t ! ~22!

——→
a→0

2
4@12e22TAL2TAL~12e22TAL!#

a2L~12e22TAL!

——→
T large 4T

a2AL
. ~23!

~We are using the notation of@1#, with T and L the con-
tinuum length of the two-geometry in the ‘‘time’’ direction
and the renormalized cosmological constant. They are
lated to their discrete counterparts by the relationsl̃2l̃c
5a2L and ta5T, wherea denotes the link length.! This
diverges exactly the way one would expect from a volu

4Let us take the opportunity to correct some misprints in Eq.~29!
of @1#, which has been used in deriving formula~20!. The correct
equation reads

Gl~l1,l2;t!5
F2t~12F2!2Bt

l11l2

l2Bt
2At

l11l2

3 (
k50

min~l1 ,l2!21
~l11l22k21!!

~l12k21!!~l22k21!!k! S2 AtCt

Bt
2 Dk

,

whereF, At , Bt , andCt are defined in@1#.
5-5
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term. It reiterates the conclusion of@1# that all macroscopic
metric variables scale canonically in the Lorentzian grav
model.

We conclude that in the thermodynamic limit, pinchin
terms will be suppressed since their number is proportio
to N0, whereas the~connected! bulk diagrams behave like
;N1. For largeN, the pinch contributions must therefor
factorize according to

S 11 (
n>1

Ṽn~T!unD 5S 11N0 (
m>1

pm~T!umD
3S 11N(

n>1
ṽn~T!un1O~N2! D .

~24!

Taking the logarithm, we see that the sum@11(pm(T)um#
;N0 will only contribute a constant term to the free energ
which does not affect the universal behavior of the mod
We will make no attempt to calculate it explicitly. Simila
considerations apply to the high-T expansion of the magneti
susceptibility in the presence of gravity. The pinch contrib
tions factorize, and we will only need to compute the mu
plicity ṽn

(2) of bulk polygon graphs with two odd vertices p
triangle in

x;S (
n>1

ṽn
~2!unD . ~25!

Our next step will be to derive the probability distributio
of the coordination numbers in the Lorentzian gravity mod
in the thermodynamic limit as the cosmological constanl
→lc5 ln 2. Recall that when generating an interpolati
space-time between an initial and a final spatial geome
the geometry of each space-time ‘‘sandwich’’ withDt51 is
independent of the previous one in the sense that there a
local constraints on how the numberski>1 of timelike
future-pointing links can be chosen at each vertexi @1#. Hav-
ing reached a spatial slice at timet, we can generate th
space-time betweent and t11 proceeding from ‘‘left to
right.’’ To each vertexi at time t we associateki timelike
links ~ending at vertices of the subsequent spatial slicet
11! and the spacelike link to the right of the vertex. The
are therefore exactlyki triangles associated with the vertexi,
contributing with a weight factore2kl to the action, as illus-
trated in Fig. 3. Since the assignment of the orderki of out-
going timelike links to the vertex is completely independe
of the k assignments of other vertices, the probability dis
bution for k outgoing future-directed links is given by

pl~k!5e2kl~el21!. ~26!

FIG. 3. The triangles contributing to the weight at the vertexi.
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Strictly speaking, the argument leading to Eq.~26! is only
correct in the continuum limit in which ‘‘extreme pinching’
to vanishing spatial lengthl 50 does not occur@for off-
critical l, relation ~26! must be modified to account for th
fact that moves changing the torus topology are forbidde#.
Fortunately this is the only case we are interested in, and
final probability distribution is therefore obtained by settin
e2l51/2 in Eq.~26!, yielding

p~k![plc
~k!5

1

2k . ~27!

For reasons of symmetry, the distribution of incoming tim
like links at i ~originating at the slice att21! is of course
identical. Given relation~27!, we can now compute the prob
ability distribution p̃( j ) of the vertex order, i.e., of thetotal
numberj of links meeting at a vertex~incomingand outgo-
ing timelike and spacelike links!:

p̃~ j !5
j 23

2 j 22 , j >4. ~28!

With the distribution~27! in hand, we can now embark o
the actual counting of diagrams contributing to the susce
bility coefficients ṽn

(2) in Eq. ~25!. We will only quote the
results up to ordern55. Further details of the counting pro
cedure will appear elsewhere. The average numbers of
grams per triangle~i.e., per unit volume! are listed in Table I.
Open graphs are connected graphs without any s
intersections. Closed graphs are connected graphs which
not open. The disconnected graphs consist of two or m
components and contribute with a minus sign.

In order to double-check our results at order 4 and
where the counting becomes slightly involved, we have p
formed a numerical check on the coefficientsṽn

(2) listed
above. This was done by computer-generating histories
length Dt;100, with an initial spatial slice of lengthD l
5200, and counting diagrams of a given type. The res
are given in Table II and in very good agreement with t
exact calculation. They are based on a total of;33105

vertices at order 4 and;93105 vertices at order 5. We hav
not listed the counting of disconnected graphs separat
since it follows closely the counting of closed connect
graphs.

TABLE I. Average numbers of diagrams per unit volume
ordern obtained by diagram counting.

n Open Closed Disconnected Total

1 3
2 0 0 3

2

2 81
2 0 0 81

2

3 431
2 0 0 431

2

4 2145
6 14 217 2115

6

5 10381
6 1345

18 217417
18 9971

2

5-6
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In order to evaluate the results from the high-T expansion,
we assume a simple behavior of the susceptibility of
form

x~u!;AS 12
u

uc
D 2g

1B ~29!

near the critical pointuc , with analytic functionsA and B.
Using the ratio method~see, for example,@10#!, we have
fitted the susceptibility coefficients to

r n5
ṽn

~2!

ṽn21
~2! 5

1

uc
S 11

g21

n D . ~30!

Plotting the ratios r n linearly against 1/n for n
P1, . . . ,nmax, we have extracted the estimates given
Table III for the critical pointuc and the critical susceptibil
ity exponentg.

The estimates for the critical exponent should be co
pared to the exact values forg for the Ising model on a fixed
regular lattice and on dynamically triangulated lattices~Ising
spins coupled to Euclidean quantum gravity!, which are
g reg51.75 and gdt52, respectively. The data from th
high-T expansion clearly favorg51.75 in our model. In-
deed, the estimates forg are remarkably close to this value
given that we are working only up to order 5 in the expa
sion parameteru5tanhb. The conclusion that the critica
exponents of the Ising model coupled to Lorentzian quan
gravity coincide with those found on regular lattices is a
supported by the Monte Carlo simulations we have p
formed.

However, before turning to a detailed description of t
simulations we would like to illustrate how well the high-T
expansion works even at this rather low order. We will co
pare theb-dependent cosmological constantlc(b) defined
in Eq. ~14!, which can be measured directly in the Mon
Carlo simulation, with the same quantity obtained from t
high-T expansion. Recall that in the thermodynamic lim
lc(b) is essentially given by the spin free energy, Eq.~11!,
which can be computed in the small-b expansion. We have

TABLE II. Average numbers of diagrams per unit volume
ordersn54,5 obtained numerically.

n Open Closed

4 214.6426 0.179 13.9966 0.007
5 1037.7706 0.751 134.1976 0.098

TABLE III. Estimates for the critical point and the critical sus
ceptability exponent, using the ratio method for data points up
ordernmax.

nmax Critical point Critical exponent

3 uc50.2488 g51.820
4 uc50.2462 g51.789
5 uc50.2458 g51.783
10403
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determined the densityf̃ (u), defined in Eq.~15!, by counting
closed polygon graphs in the high-T expansion up to order 6
Inserting this into formula~14! leads to

lc
high-T~b!5lc1

1

2
ln 21

3

2
ln coshb1u31

5

3
u4

1
35

9
u51

263

27
u6. ~31!

In Fig. 4 we show the data points forlc(b)23b/2 as mea-
sured by the Monte Carlo simulation.5 Sincelc5 ln 2 in pure
gravity, the data should approach32 ln 2 for b→0 and lc
5 ln 2 for b→`, both of which are well satisfied. In order t
quantify the effect of theu expansion, we have plotted bot
the zeroth-order expressionF1(b)5lc1 1

2 ln 213
2 ln coshb

5The subtraction of 3b/2 has been performed to ensure a fin
limit as b→`. It corresponds to using the actionb(^ i j &(s is j

21) in Eq. ~2!, whose ground state has energy zero rather t
23bN/2.

o

FIG. 4. The critical cosmological constant as a function of t
Ising couplingb, as measured by Monte Carlo simulations~t532,
N52048! and compared to the corresponding high-T expansions
F1(b) andF2(b) at order 0 and order 6.
5-7
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23
2b and the improved sixth-order expressionF2(b)

5lc
high-T(b)2 3

2 b. The latter agrees well with the measur
Monte Carlo values right up to the neighborhood of the cr
cal Ising couplingbc . At the critical pointbc the measured
functionlc(b) exhibits a cusp. This reflects the singular p
contained inlc(b), which of course cannot be captured b
simply plotting the analytic function~14!.

III. MONTE CARLO SIMULATION

Monte Carlo simulations have been used successfull
the study of Euclidean 2D quantum gravity. The formalis
known as ‘‘dynamical triangulations’’ provides a regulariz
tion of the functional integral well suited for such simul
tions, allowing in addition for a straightforward matter co
pling of Gaussian fields as well as of spin degrees
freedom. Extensive computer simulations of the combin
gravity-matter systems have been performed, leading to
sults in perfect agreement with exact results derived fr
Liouville theory and matrix model calculations.

The Lorentzian model resembles the dynamically trian
lated model in that its dynamics is associated with
fluctuating connectivity of the triangulations contributing
the path integral. This allows us to take over many of
techniques from the computer simulations of the dynamic
triangulated models. We must specify the update of both
geometry and the matter fields, the latter being standard
a given triangulation we update the spin configurations
the same spin cluster algorithms used for dynamical trian
lations. This presents no problems since our configurati
form a subset of the full set of dynamical triangulations us
in Euclidean quantum gravity~on the torus!. During the up-
date of geometry, we want to keep the number of time sli
fixed while allowing any spacelike fluctuations compatib
with the model. A local change of geometry or ‘‘move
which is clearly ergodic~i.e., can generate any of the allowe
configurations when applied successively! is shown in Fig. 5.
It consists in deleting the two triangles adjacent to a giv
spacelike link~if the resulting configuration is allowed!. Its
inverse is a ‘‘split’’ of a given vertex and two neighborin
timelike links into two, thereby creating a new spaceli
link, as well as two new triangles. This is a special case
the so-called ‘‘grand canonical move’’ sometimes used
dynamical triangulation simulations@11,12,13# and does not
preserve the total volume of space-time.

Detailed balance equations for the move can be deri
from standard considerations@13#. Let NV denote the numbe
of vertices~NV5N/2, whereN is the number of triangles!
andv a specific vertex. For pure Lorentzian gravity witho
matter, the equation for detailed balance reads

FIG. 5. The move used in the Monte Carlo updating of t
geometry.
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P~NV!
P~NV→NV11!

NVkinkout
5P~NV11!P~NV11→NV!,

~32!

where P(NV)5e22lNV/NV! is the probability distribution
for labeled triangulations, andkin andkout count the incom-
ing and outgoing timelike links atv ~see Fig. 5!. We are still
free to chooseP(NV→NV11) and P(NV11→NV) such
that condition~32! is satisfied. Once a transition probabilit
P(NV11→NV), say, has been chosen, it will be tested d
ing the simulation against the uniform probability distrib
tion between 0 and 1 as follows. Choose a random num
r P]0,1]. Then, if the move isallowed ~i.e., if the resulting
triangulation belongs to the allowed class of configuration!,
it is accepted ifP(NV11→NV).r . If it is not allowed, one
proceeds to the next move.

It is straightforward to generalize the updating of geo
etry to include Ising spins. The spin Hamiltonian is includ
in P(NV), which now becomes a function of bothNV and the
spin configurations. When inserting a vertexv, one has to
specify at the same time a spin associated withv. The choice
of spin up or down is made with probability 1/2, and the fin
result tested as in the case of the pure geometry update

We have performed the computer simulation for surfa
with toroidal topology and for system sizes ofN52048,
4050, 8192, 16200, and 32768 triangles, and with a num
t532, 45, 64, 90, and 128 of time slices, respectively. Sin
the moves are not volume preserving, fixing the system s
to N is implemented as follows: we allow the volume
fluctuate within a certain, not too wide range, and collect
every sweep the first configuration with volumeN. The vol-
ume fluctuations are controlled by adding a termdl(DN)2

to the action, whereDN is the deviation of the volume from
its desired valueN. This term does not affect the ensemble
configurations collected, since for all of themDN50. We
find that^DN&21;Adl. Finally, one checks that the resul
obtained do not depend on the chosen, allowed range of
ume fluctuations. A sweep is a set of approximatelyNV ac-
cepted moves. For eachb value used in the multihistogram
ming analysis we perform 1.253106 sweeps ~0.75–
1.003106 for N532768!. Measurements are made eve
five sweeps and errors are computed by data binning.

A. Numerical results for the spin system

The determination of the critical properties of the Isin
spin system coupled to Lorentzian gravity proceeds in t
steps~see@14# for a recent, more complete discussion in t
context of 2D Euclidean quantum gravity!. We first locate
the criticalb value where the system undergoes a transit
from a magnetized~at largeb! to an unmagnetized phase
Next, we perform simulations in the neighborhood of t
critical valuebc and use finite-size scaling to determine t
critical exponents. Finite-size scaling is also very useful
determining the location of the critical couplingbc itself,
since a number of standard observables show a characte
behavior forb close tobc . The following are some of the
observables we have used, together with their expec
finite-size behavior~see@14# for a full list!:
5-8



ity

fla

tu

t

s
a

e
si

-
th

in
,

r
ble

v-
f

ee-
the

n

t the
ing
t
0,

om

u-
s
pe-

t

tical
ll

m

-
nal
sed

nal

t

NEW PERSPECTIVE ON MATTER COUPLING IN 2D . . . PHYSICAL REVIEW D60 104035
x5N~^m2&2^umu&2!;Ng/ndH ~susceptibility!, ~33!

D lnumu5NS ^e&2
^eumu&
^umu& D;N1/ndH S D lnumu[

d lnumu
db D ,

~34!

D ln m25NS ^e&2
^em2&

^m2& D;N1/ndH S D ln m2[
d ln m2

db D ,

~35!

whereg andn are the critical exponents of the susceptibil
and of the divergent spin-spin correlation length, anddH is
the Hausdorff or fractal dimension of space-time. For a
space-time~where of coursedH5d52!, we havend52,
whereas for the Ising model coupled to Euclidean quan
gravity ndH53 ~anddH'4!. The internal energy densitye
and the magnetizationm of the spin system are defined by

e5
21

NZN~b!

dZN~b!

db
, m5

1

NZN~b,H !

dZN~b,H !

dH U
H50

.

~36!

In order to find the critical pointbc , we can use the fac
that the pseudocritical couplingbc(N) at volumeN is ex-
pected to behave like

bc~N!;bc1
c

N1/ndH
~37!

close tobc5bc (N5`), with c a constant. The observable
~33!–~35! all have well-defined peaks which we used for
precise location ofbc(N), with the help of multihistogram
techniques. Equation~37! can now be used to extractbc and
1/ndH . However, it is advantageous to determine first 1/ndH
from the peak values of Eqs.~34! and~35!, and then substi-
tute this value into Eq.~37!, thus reducing the number of fre
parameters in the fit. Afterwards, one can check that con
tent values for 1/ndH are obtained from the observables~34!
and ~35! at bc , using multihistogramming. In our simula
tions, 1/ndH extracted from the peaks was so close to
Onsager value 1/2 that we did not hesitate to use 1/ndH
51/2 in Eq.~37!. Leaving it as a free parameter, one obta
consistent results, but the error inbc becomes larger. Finally
we have determinedg/ndH from Eq. ~33!, both from the
peak values and atbc ~and again using multihistogramming!.

In Table IV we have listed thebc values extracted from
measuringD lnumu and D ln m2, and assuming that 1/ndH51/2.
For comparison with the high-T results, we also give the
corresponding critical values for the expansion parameteu.
Similar results are obtained from the rest of the observa
we have measured.

TABLE IV. Critical value bc of the Ising coupling constan
obtained from finite-size scaling.

Observable bc , using 1/ndH5
1
2 uc5tanhbc

D lnumu 0.2522~2! 0.2470~2!

D ln m2 0.2520~1! 0.2468~2!
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Column 1 of Table V contains the values of 1/ndH ex-
tracted from the peak position for all three observables~33!–
~35! by using relation~37! ~with free parametersbc , 1/ndH ,
andc!. Columns 2 and 3 give 1/ndH extracted directly from
Eqs. ~34! and ~35! by using the peak values of the obser
ables and their values atbc . Last, we give the value o
g/ndH extracted from the susceptibility~33! in Table VI.

Comparing the estimates forbc from the high-T expan-
sion and the Monte Carlo simulation, one finds good agr
ment. The results of the simulation strongly indicate that
critical exponents are given by the Onsager values 1/ndH
51/2 andg51.75. Again, this corroborates the conclusio
already reached by means of the high-T expansion. Further
evidence that the system belongs to the Onsager and no
Euclidean gravity universality class comes from measur
the magnetization exponentbm /ndH and the specific hea
exponenta/ndH . Their Onsager values are 1/16 and
whereas in Euclidean gravity they are 1/6 and21/3. In our
model, the magnetization exponent determined fr
^umu&b5bc

;N2bm /ndH was found to be bm /ndH

50.070(1), favoring the Onsager value 0.0625 over the E
clidean gravity value 0.1666.̄ The specific heat exponent wa
obtained from the finite-size scaling of the values of the s
cific heat peaksCV;Na/ndH. A power fit yields a/ndH
50.0861(7) atx2/NDF511.6, whereas a logarithmic fi
givesx2/NDF51.57, supporting the conjecture thata50.

We do not have independent measurements of the cri
parametersn anddH from the spin sector alone, but we wi
determine the Hausdorff dimensiondH in the next subsection
from an analysis of the geometry of Lorentzian quantu
gravity coupled to Ising spins.

B. Numerical results for the geometry

As is well known from both analytical studies@15,16,17#
and numerous Monte Carlo simulations~@18,16# and refer-
ences in@13#!, finite-size scaling is a powerful tool for de
termining the fractal space-time structure of two-dimensio
Euclidean quantum gravity. The same technique can be u
to investigate the geometric properties of two-dimensio
Lorentzian quantum gravity.

TABLE V. The critical exponent 1/ndH extracted in various
ways from finite-size scaling.

Observable 1/ndH from peak pos. 1/ndH at peak 1/ndH at bc

x 0.52 ~2!

D lnumu 0.47 ~2! 0.531~2! 0.521~3!

D ln m2 0.53 ~1! 0.531~1! 0.520~3!

TABLE VI. The critical exponentg/ndH obtained from finite-
size scaling of the susceptibilityx.

Observable Value at peak Value atbc

x 0.883~1! 0.899~2!
5-9
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In a given triangulation, we define the distance betwe
two vertices as the minimal length of a connected path
links between them. In 2D Euclidean quantum gravity t
notion of distance becomes proportional to the true geod
distance between the vertices in the infinite-volume lim
We will assume this is also true for the present model.
diffeomorphism-invariant correlation functions of matt
fields must be functions of this geodesic distance. Both
geodesic distance and the fractal dimension appear in
expression for the volume,

N~r !;r dH for r !N1/dH, ~38!

which denotes the number of vertices~or triangles! inside a
ball ~a disk in dimension 2! of link radiusr. If nv(r ) denotes
the number of vertices at distancer from a fixed vertexv,
relation ~38! implies that

nv~r !;r dH21 for r !N1/dH. ~39!

Finite-size scaling for an observableA then leads to a scaling
of the correlation function integrated over all points at d
tancer from a vertex according to

^A~r !A~0!&N;N121/dH2DAFA~x!, x5r /N1/dH. ~40!

The factorN121/dH comes from the integration over points
distancer from vertex v, using Eq.~39!, while DA is the
genuine dynamical exponent of the correlator.

By measuring correlation functions for various volum
N, one can determinedH and the critical exponents. We wi
concentrate here on the Hausdorff dimensiondH . One first
rescales the height of the measured distributio
^A(r )A(0)&N to a common value. However, the distributio
measured for differentN will still have different widths as
functions ofr. By appropriately rescalingr, they can then be
made to overlap in a single, universal functionFA(x). From
a technical point of view it is important to work with th
shifted variable

x5
r 1aA

N1/dH
, ~41!

where the shiftaA may depend on the observableA. Using
Eq. ~41! takes into account in an efficient way the major p
of the short-distance lattice artifacts, as has been discu
carefully in @19,16,17#. Applying standard procedures from
Euclidean 2D quantum gravity then leads to the results s
marized in Table VII. The observables appearing in Ta
VII are ~i! the numbernv(r ) of vertices at a given~link!
distancer from a fixed vertexv, which may be viewed as th
correlation function of the unit operator in quantum grav
@15#; ~ii ! the numbersup(r ) of spins at distancer from a
vertexv which are aligned with the spin atv; ~iii ! the num-
ber sdown(r ) of spins with orientation opposite to the spin
v; ~iv! the spin-spin correlation functions(r ) between ver-
tices separated by a geodesic distancer; ~v! the function
S(r ), obtained by integratings(r ) over all vertices at dis-
tancer from a vertexv; ~vi! the distributionSV( l ) of spatial
volumes, withl denoting the length of a given time slice. F
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the shiftaA , we obtained the estimate24,aA,21. Unfor-
tunately, our statistics was not good enough to determin
with more accuracy. However, the fact that it is nonvanis
ing justifies its introduction in the first place. After a suitab
normalization, we expect the volume distribution to beha
like

SV~ l !; f ~ l /N1/dH!. ~42!

Figure 6 demonstrates clearly that for the Ising model ab
5bc , SV( l ) scales as anticipated when we setdH52.0. Scal-
ing the Ising distributions atb5bc(N), the pseudocritical
point of the magnetic susceptibility, or considering pu
gravity leads to similar results.

We conclude from Table VII that the Hausdorff dime
sion of 2D Lorentzian quantum gravity is close to the fla
space valuedH52. This is clearly different from the Euclid
ean situation, which is characterized bydH54 for pure
gravity and dH>4 in the presence of a single Ising sp
model. The results for the Lorentzian gravity-matter syst
are particularly convincing for the purely geometric obse
ablesnv(r ) and SV( l ), which basically coincide with the
corresponding measurements obtained in Lorentzian p
gravity.

TABLE VII. The Hausdorff dimensiondH , obtained from the
Ising model scaling atbc ~column 1!, at bc(N) ~column 2!, and
from pure gravity~column 3!.

Observable

dH

c5
1
2 , b5bc c5

1
2 , b5bc(N) c50

nv 2.00~5! 2.00~5! 2.03~4!

sup 1.92~5! 2.08~2!

sdown 2.20~3! 2.07~2!

S 2.10~3! 2.20~5!

s 2.05~7! 2.05~5!

SV 2.00~4! 2.00~3! 2.00~3!

FIG. 6. The distribution of spatial volumesSV( l ) at b5bc ,
rescaled according to Eq.~42!. We have setdH52.0.
5-10
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IV. CONCLUSIONS

We have presented compelling evidence, coming from
high-T expansion as well as Monte Carlo simulations, th
the critical exponents of the Ising model coupled to Lore
zian gravity are identical to the exponents in flat space. T
is in contrast with the situation in Euclidean gravity~i.e.,
Liouville gravity!, where the exponents change.6 Similarly,
the fractal dimension of space-time is unchanged in
Lorentzian model after coupling it to a conformal fie
theory ~the Ising model at the critical point!. In Euclidean
gravity the fractal properties of space-time are in genera
function of the central change of the conformal field theo
From the evidence collected so far, we conclude that ma
and geometry couple weakly in Lorentzian gravity a
strongly in Euclidean gravity.

For the case of the Ising model, this difference can
explained in more detail in geometric terms. As mention
earlier, it has been shown in@1# that the difference betwee
Euclidean and Lorentzian gravity is related to the presenc
absence of baby universes. On the other hand, it is by
well understood that baby universes are at the source o
strong coupling between spins and geometry. This can h
pen because the spin configuration of a baby universe ca

6The exponents of the Ising model coupled to 2D Euclidean qu
tum gravity are equal to those of the 3D spherical model. It is
understood whether this is a coincidence. More generally, the
ponents of the (m,m11) minimal conformal model coupled to 2D
Euclidean quantum gravity agree with the critical exponents of
spherical model in 2m/(m11) dimensions.
,

a
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flipped relative to that of the ‘‘parent’’ universe at almost n
cost in energy since the ‘‘baby’’ and the ‘‘parent’’ are co
nected only by a thin tube. The geometry of two-dimensio
Euclidean quantum gravity is very fractal, with man
‘‘pinches’’ at all scales, leading to typical spin configuratio
that look very different from those on flat space-time. Mor
over, the presence of Ising spins on the surface effectiv
enhances the fractal baby universe structure since it is
actly the lowest-energy spin configurations~apart from the
ground state! that involve baby universes. The interactio
becomes so strong that it tears the surface apart when
couple more than two Ising spins to the two-dimensio
geometry. This is the origin of the famousc51 barrier of
two-dimensional Euclidean quantum gravity.

Once the creation of baby universes is disallowed, as
the case of the Lorentzian model, the coupling between m
ter and geometry becomes weak, and the matter theory
the same critical exponents as in flat space-time. This h
pens although the typical space-time geometry is by
means flat, a fact we have already emphasized in the In
duction, and which is illustrated by Fig. 1. On the contra
our model allows for maximal fluctuations of the spatial vo
ume which can jump from~essentially! zero to infinity in a
single time step. However, as we have been able to dem
strate, such violent fluctuations of the two-geometry are s
not sufficient to induce a change in the critical exponents
the Ising model. From the above arguments it seems lik
that Lorentzian gravity can avoid thec51 barrier. This
question is presently under investigation@20#.
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