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New perspective on matter coupling in 2D quantum gravity
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We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian
guantum gravity exhibit§two-dimensional flat-space behavior when coupled to Ising spins. The evidence
comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-
matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model
is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much
“smoother” critical behavior[S0556-282(199)08720-2

PACS numbe(s): 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc

[. INTRODUCTION taking the continuum limit of a state sum of dynamically
triangulated two-geometries. The Lorentzian aspects of the

At the end of the twentieth century, the nonperturbativemodel were twofold: First, the sum was taken only over
quantization of gravity remains an elusive goal for theoreti-those two-geometries which are generated by evolving a
cal researchers. There is not even a consensus on how tR&e-dimensional spatial slice and which allow for the intro-
problem should best be tackled. For example, considerinfuction of a causal structure. Second, the Lorentzian propa-
pure-gravity approaches, we have on the one hand Euc”deg@tor_was obtained by a_suitable analytic continuation in the
path-integral methods, which are close to usual formulation§°UPling constant. The first aspect turned out to be the cru-
of (nongenerally covariapguantum field theories and well €ial one, leading to a continuum theory of 2D quantum grav-

suited for numerical simulations. On the other hand, in cally inéquivalentto the usual Liouville gravity. This was

nonical quantization approaches it is—at least in principle—s'hown in[1], where both the loop-to-loop propagator and

easier to address questions about the behavior of spati)’:’ﬂ”mouS geometric properties of the model were calculated

three-geometries, but the complicated structure of the cone-Xp“C'tly' The Hausdorff dimension of the quantum geom-

straints tends to lead to computational difficulttednfortu- etry is dyy =2 and points to a much smoother behavior than

) ; ) that of the Euclidean cas@vhered,=4).
nately, very little is known about the relation between the However, we must emphasize theif=2 doesnotimply

covariant and canonical approaches. In part this is due t0 theq.s yeometry. The model of Lorentzian gravity defined in
“signature problem” of the path-integral formulations: the 1 ajjows for arbitrarily large fluctuations of the spatial vol-
sum over all space-time geometries is usually taken ovefime from one time slice to the next. This is illustrated by
Riemannian and not over the physical Lorentz{pseudo-  Fig. 1, which shows a typical surface generated by the Monte
Riemanniap four-metrics modulo diffeomorphisms. The carlo simulations, to be described in Sec. Ill. The length of
problem of how to relate the two sectors by an appropriatelfhe compact spatial slice fluctuates strongly with tifpeint-
generalized Wick rotation remains unresolved. ing along the vertical axjs Using the results of1], one
Our aim is to investigate the possible consequences Qfasily derives that in the thermodynamic limit and for large

taking the Lorentzian structure seriously within a path-times the average spatial volurheand fluctuations arounid
integral approach. In order to gauge the difficulties this in-pehave like

volves and to circumvent technical problems, we first ad-

dressed the issue in two space-time dimensions, where there 1 1
already exists a well-understood theory(Bliclidean quan- (Ly=— and (AL)=(L)—(L)>=—, (1)
tum gravity, namely, Liouville gravity. Ifil], we proposed a VA V2A

new, Lorentzian model of 2D quantum gravity, obtained by
respectively, for a given cosmological constantThis dem-
onstrates that even in the continuum limit the fluctuations are

*Email address: ambjorn@nbi.dk large and of the same order of magnitude as the spatial vol-
TEmail address: konstant@nbi.dk ume itself. _ .
*Email address: loll@aei-potsdam.mpg.de We managed ifl] to further trace the difference between

IAlternatively, one could embed quantum gravity in a larger, uni-theé two quantum theories to the presence or absence of so-
fied theory such as string theory ¢the as yet nonexistentv  called baby universes. These are outgrowths of the two-
theory. However, these are still far from giving us any detailedgeometry, giving it the structure of branchings over branch-
information about the quantum gravity sector. ings, which are known to dominate the typical geometry

0556-2821/99/6(10)/104035%11)/$15.00 60 104035-1 ©1999 The American Physical Society



J. AMBJORN, K. N. ANAGNOSTOPOULOS, AND R. LOLL PHYSICAL REVIEW D60 104035

}“mgsgﬁ?%}s}} . its spinsoj=+1. In [1] we made a careful analysis of the

ﬁ%ﬁﬁﬁi‘i’?ﬁ\ = implications of the Lorentzian signature for the sum over
\\1\"‘\\\}-\& ' space-time metrics. The most straightforward way of obtain-
27147 222 d‘ i ing the continuum limit consisted in performing the calcula-

2OV

= |\ ‘-'l.ﬂ{;
SRS
AV

tions in the discretized model with purely imaginary cou-
pling (corresponding to Euclidean signaturand only
afterwards “rotating back” to the Lorentzian sector. More-
over, it turned out that certain simple properties, such as the
fractal dimension of space-time, were independent of the
analytic continuation.
o dh We will apply the same philosophy in the present context
oo by analyzing the Ising model coupled to 2D gravity with
coupling constants corresponding to the Euclidean signature
sector. Nevertheless, we will continue to talk about “Lorent-
zian” gravity coupled to matter, because the choice of two-
dimensional Euclidean geometries contributing to the path

= «NS&E\V\\%IE’A integral is dictated by the requirement that after the rotation

;\\2‘:‘?“‘4“.@, to Lorentzian signature they should be causal and nonsingu-
(/ﬁ,ﬂﬂ{&\ W : lar. The “matter observables” we will consider are the criti-

‘4‘\\\_‘\\3“&‘\“ cal exponents for the Ising model, characterizing the under-

T 7

lying c=1/2 fermionic continuum model coupled to gravity,
FIG. 1. A typical discrete history of pure Lorentzian gravity which are not expected to change under the rotation to

with volume N=1024. Lorentzian signature. In order to determine the universality

class of the interaction between matter and gravity, it is

contributing to the Euclidean state sum. On the other handherefore convenient to work entirely within the Euclidean
in the Lorentzian state sum, one can suppress the formatic¥ector of our Lorentzian gravity model.
of such branchingwith respect to the preferred spatial slic- ~ For fixed regular two-dimensional lattices and in the ab-
ing (which is not present in the Euclidean picture, where nosence of an external magnetic field, the Ising model can be
directions are distinguishedThere is also a physical moti- solved exactly in a variety of waygsee, for example,
vation for suppressing the generation of baby universed3,4,5). The partition function(for the square lattigewas
since the associatddiscret¢ geometries can usually not be found by Onsager. Its critical behavior is characterized by a
embedded isometrically in a smooth Lorentzian space-timeogarithmic singularity of the specific heat and the critical
If nevertheless onelid decide to generalize the evolution exponents near the Curie temperature: 0, 3=0.125, and
rules of the Lorentzian model to allow for such branchings,=1.75, for the specific heat, the spontaneous magnetiza-
(and keep only a weaker notion of causality; E]), one  tjon, and the susceptibility, respectivel].
would rederive the usual Euclidean Liouville results. Inwhat o the case of the usual Euclidean 2D gravity, described
follows, when talking about “the Lorentzian model,” we a5 ensemble of planar random surfaces, coupling to Ising
will mean the unmodified model without branching baby gping \as first considered ], where an exact solution was
UNIverses, 1.e., the mpdel O.f 2D quantum gravity thgt doe%btained with the help of matrix model methods. It could be
not lie in the_same umversahty class as L'OUY'”e gravity. Weshown that in the presence of gravity, the matter behavior is
also would like to point out that from the point of view of a “‘softened” to a third-order phase transition, characterized
canonical quantization the Lorentzian model is much mor} " - _ T

y the critical exponenta=—1, 8=0.5, andy=2 [7]. On

natural. The inclusion of topology changes of space into . o
. INCLS! potody g P ! the other hand, the geometry is “roughened,” as exemplified

canonical scheme would require a so-called third quantizal—) , T )
tion of geometry. y the increase from-1/2 (pure 2D Liouville gravity to

In Liouville gravity, matter couples strongly to geometry, —1/3 Of the entropy exponentsing for baby universes on
perhaps even too strongly in the sense that the combing®anifolds of spherical topology.
system becomes inconsistent when the central charge of the It is not entirely straightforward to apply the methods
(conforma) matter exceeds 1. Arguments have been preused to obtain these exact solutions to the Lorentzian gravity
sented which link the strong deformation of geometry to themodel. For example, one can write down an expression for
creation of baby universgg]. It is therefore conceivable that the transfer matrix generalizing that of the Onsager solution
the Lorentzian model of gravity—where baby universes ardy imposing a length cutoff, on the length of spatial slices.
absent—has a weaker and less pathological coupling to maHowever, a major stumbling block to understanding the be-
ter. havior of its eigenvalues dg— < is the fact that as a con-

In order to understand the behavior of the combinedsequence of the gravitational degrees of freedom, transitions
gravity-matter system, we are considering here the couplingetween spatial slices of different length are allowed. This
of the gravitational model of Refl] to an Ising model of makes the use of Fourier transforms problematic, which are
spin 3, with nearest-neighbor interactidiy;;yo0; between an essential ingredient of this and other algebraic solution
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schemes. Moreover, the Hilbert space dimension for the disSubstituting Eq.(3) into Eq. (2), the partition function be-
crete, finite model is given bE:OZIZ', which grows rapidly =~ COmMes
with 1.

In the absence of an analytic exact solutfomne way to  Z(8,N)=(coshg)5>,
try to extract information about the matter-coupled model is {oi}
by performing a series expansion of the partition func@on
at high or low temperature, or of suitable derivativesZof X(ogop)+---
For flat, regular lattice geometries, these have been studied
extensively since the early days of the Ising model. It is well
known that the highF expansion, in particular that of the —:2Y(coshg)s
magnetic susceptibility at zero field, is well suited for ob-
taining information about the critical behavior of the theory. . ]
We will show that the same is true for the coupled gravity-With v denoting the number of vertices aadhe number of
Ising model, after taking into account some peculiarities to'€arest-neighbor paitse., the number of lattice linksNote
do with the fact that we have an ensemble of fluctuating@t the terms-u” in Eq. (4) are only nonvanishing if every
geometries instead of a fixed lattice. In the limit of large i IN 91,1, "0, @ppears an even number of times. Repre-
lattice sizeN, there is a well-defined expansion in terms of S€Nting spin pairsd;o;) by drawing a link betweeio; and
u:=tanhB, where the coupling is proportional to the in- 7j On the Iattlc_e, _th|s is equwglent to t_he following state-
verse temperature, whose coefficients can be determined #J€nt: nonvanishing contributions #a, in Eq. (5) corre-

diagrammatic techniques. Given a plausible ansatz for thePond to figures of lattice links which are closed polygons,
singularity structure of the thermodynamic functions, oneVith an even number of links meeting at each vertex. The
oefficient(},, simply counts the number of such figures at

can then extract estimates for the critical point and crltlcalcr der n that can b ¢ down on ven latt nd wil
exponents from the first few terms of such an expansmn(.) € at can be put down on a given fattice ana
) depend on the lattice geomeftyiangular, square, efc.lt is
These results are corroborated by performing a Monte Carlg L ;
: ) . ; . a polynomial in the variabl@\.
simulation of Lorentzian gravity coupled to the Ising model.

S X Because of the extensive nature of the free en&rgy)
Apart from being in good agreement with the higlexpan-  _ —KTInZ(N), we must have that (£30Q,u")~eNt) in

sion, the simulations also allow us to measure the quantur{’he thermodynamic limiN— c, and we can therefore write
geometrical properties of the model. for the partition function per unit volume,

1+UE O'iO'j‘f‘UzE (O’iﬂ'j)
(ij) ij) (k)

4

1+ 21 Qnu”>, (5)

1 S % )11
II. HIGH- T EXPANSION In Z(B)=N|n Z(ﬁ,N): NCOShB"F Nln 2+ nZ]_ w, U,

Recall the usual higf-expansion of the Ising model on a ©
fixed lattice of volumeN, with partition function wherewgo) is obtained by taking the term linear Min €,
and settingN= 1. Note that both connected and disconnected
graphs contribute t@{”). A similar relation can be obtained

J for the magnetic susceptibility at zero fieldy(N)
Z(ﬁ'N):{U;ﬂ} exp( B% Ui"i“"? ol B=iT =KT(6%/ 9H?)In Z(N)|y—o. At high temperature, the suscep-
' 2) tibility per unit volume can be expressed as
x=kT[ 1+ > oPu"|. @)

n=1

where the sum is taken over all possible spin configurations,
andJ>0 denotes the ferromagnetic Ising coupling. We will o @ 0) :
only consider the case of vanishing magnetic fiei=0.  The coefficientsw(?) are the exact analogues of” in Eq.

The Ising spins are located at the lattice vertices, labeled b{f). where the counting now refers to polygon graphs with
i,jel,...v. A convenient expansion parameter at hightWO odd verticeqvertices with an odd number of incoming

links), and all other vertices eveaf. [9], but beware of the
difference in notation for the number of vertiges
Since we are primarily interested in the bulk behavior of
3) the gravity-matter system, we will in the following for sim-
plicity choose the boundary conditions to be periodic. That
is, we will identify the top and bottom spatial slices of the
cylindrical histories introduced ifil]. Clearly, this is not
going to affect the local properties of the model. As above,
2A matrix model of Lorentzian gravity coupled to Ising spin has we will denote the discrete volume, i.e., the number of tri-
been formulated recently. Its analysis is the subject of a forthcomangles of a given two-dimensional geometwith torus to-
ing publication[8]. pology), by N. It follows immediately that such a geometry

temperature isi:=tanhg, which we can use to reexpress

ef?i% = (1+ug;o;)coshp.
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containsN timelike links, N/2 spacelike linksN/2 vertices,
and 3\/2 nearest-neighbor pairs.

In quantum gravity the volumé&l becomes a dynamical
variable. For fixed topology, the only coupling constant ap- . ~ .
pearing in the action of pure 2D quantum gravity is the COS_A calculation ofZ(3,N,t) not only determines the thermo-

mological constant, multiplying the volume term. The parti—dyna_mIC properties of th_e spin system in t_he presence of
tion function of the Ising model coupled to 2D Lorentzian gravity, but at the same time descnbe_s. gravitational aspects
quantum gravity is given by of the coupled system, for example, ttritical cosmological

constant\.(B). Conversely, knowledge oh.(B) deter-

mines the spin partition function in the infinite volume limit.

GI\GLB) =D, e M1Zy(B) The analogue of the higlfi-expansion(5) in the presence of
Teh gravity is given by

2 1:e)‘cN+0(N)_ (12)
TETN't

_ —AN . T
_nge T{ai;n} eXF(%EET""’J)’ @ Z(B.N,t)=(coshB)3N22N2 >

TETN’[

1+, ﬁn(T)u”>.
n=1
where the sum is taken over all triangulatiofswith the (13
topology of a torus and time slices,Nt is the number of
triangles inT, and Z(B) the Ising partition function(2)
defined onT. Fortunately, the summation over volumes in
Eq. (8) does not lead to additional complications in the 3 1 B
analysis of the thermodynamic properties of the spin system, Ae(B)=N¢+ 5IncoshB+ 5In2+f(u), (14
since the state sums for fixed and fluctuating volume are 2 2

simply related by a Laplace transformation. Rewrite relation -
(8) as wheref(u) is defined in the thermodynamic limit by

We may reexpress the critical cosmological constant of the
combined system as

Sreq [14Z0=100(THU"]

G\ ELB)=2, e MZ(B N D=, e N > Z4(p),
N N TETN't
9)

where 7y, denotes the toroidal triangulations of volurhe ~ The coefficients() of the power series now depend on the
and lengtht in the time direction. Analogous to E¢), we  triangulationT. When counting diagrams of a given type and
expect the matter paf(3) of the free energy density in the ordern, we must keep in mind that the vertex neighborhoods

gravitational ensemble to behave in the thermodynamic limif!0 not look all the same, as they do in the case of a regular
(N—c andte N) like® lattice, but that the distribution of coordination numbers

(numbers of links meeting at a vereis subject to a prob-
ability distribution. The coefficients in the highexpansion
therefore count thaverageoccurrence of a certain diagram
type in the ensemble of triangulations of a fixed volukie
for large N.
Starting to evaluate the series Efj3) order by order, one
immediately notices a qualitative difference from the regular
G\, B)=2, elreB-MN+oN) -\ (Y= _—Bf(B), case. If we had considered a regular triangular lattocer-
N dination number § the first nontrivial contribution to the
11 counting of even diagrams would have appearechat3,

, . ) where one obtain§l;(N)=N, coming from closed triangle
wherex =\, (B=0)=In2 is the critical cosmological con- granhs. However, when looking at all two-dimensional ran-
stant of pure gravity, which was determlnetld[ili. Interest-  qom Jattices contributing to the sum over geometries in the
ing limiting cases ar@—0, where—Bf(B8) =z In2, reflect- 4 5ity case, there are geometries which have one or several
ing the factor 2 in Eq. (4) (each spin has two stafeand the  «jinches.” A pinch is a spatial slice of minimal length
strong coupling regiolB—c, where—gf(B)—3p/2[only  —1 \yhich consists of a single link and a single vertege
the ground state of all spins aligned contributes to the statf;ig_ 2). Pinches occur even if the total volume of the two-
sum (2)]. The term proportional to the pure gravity COSMO- geometry is kept fixed, since in the presence of gravity the
logical constanh . appearing together with the free energy in jength of spatial slices is a fluctuating dynamical variable.
Eqg. (10) has its origin in the sum over all triangulations: For the gravitationally coupled Ising model, the lowest-

order contribution to the power seriesunn Eq. (13) occurs
therefore already at order=1. Clearly, such pinching con-
3Note that with the conventions used in definiti®, the ground  tributions will be present at all orders, in both connected and
state energy is- 38N/2 and the free energy densityg) is nega-  disconnected diagrams, on top of the ordinary “bulk” con-
tive. tributions, coming from diagrams which do not wind around

_ ANf(u)
=e . (15
Zreq L

i(ﬂ’N,t)HeD\c*Bf(B)]N+O(N)_ (10)

(For simplicity, we have set the ferromagnetic coupling to
J=1.) We can now reexpress E(R) as
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We are interested in the behavior of this expression in the
thermodynamic limit, which is tantamount to letting the cos-
mological constant approach its critical valie—~X.. In

this limit, Eq. (19) yields simply a constarf)}°™— 2. This

is a general feature of configurations with one or several
pinches. For example, generalizing to geometries with a
single pinch of lengtH gives a coefficient Rin the large-
volume limit. As an example of a more complicated configu-
ration, the normalized coefficient for histories with one pinch
of lengthl; and a second one of length becomes, in this

___,D__-c----o__,___o limit, *
in(ly,l5)—1
~u|1+|2-4>3mm(122) (_1)k (|1+|2_k_1)|
FIG. 2. A two-dimensional geometry with a “pinch” of length ' k=0 (Ii—k=D)!I(,—k=1)tk! "

the spatial direction of the torus in a nontrivial way. The By contrast, let us now calculate the first bulk contribu-

former have no analogue on regular lattices. tion, which occurs at orden®. The contribution toQ); is
Fortunately, it turns out that the pinch contributions aresimply N, from counting the number of triangle graphs in the

irrelevant, in the sense that they contribute at a lower ordepD geometry. Taking the Laplace transform, we obtain

of N, whereas the bulk contributions #, go like N¥, k

=1. This can be seen most easily by considering the i J ~
Laplace-transformed partition function. Let us begin by % e ""N=—-—G(\,)=(N)G(\,1). (21)
evaluating the zeroth-order term of Ed.3), 2N
- TN Evaluating the expectation value Nfin the continuum limit,
G =2 e > 1 one finds
N TETN‘t
_ ~ Jd -
=2, e M(coshg)®N22N2 3 1, (1) (Ny=—G(X,t) 1 =G(X,1) (22)
N Telnt a’x

where for notational brevity we have defined an “effective . TV \/_ -

~ — — VA — Y
cosmological constantA =\ — 3 In coshB—3In 2, in accor- 2 B 41-e TVA(1-e )]
dance with Eq(14). The left-hand side of Eq.16) can be azA(l—e*ZT“"X)
computed as

Tlarge AT
~ dx 1 N _— .
G(\,t)= fﬁZWiXG(x,F;;e‘A;t), (17) a2\JA

given the explicit form of the propagator derived in Rigfl, ~ (We are using the notation ¢fi], with T af]dA ,t,he. con-

to which we also refer for details of notation. The term pro-tinuum length of the two-geometry in the “time” direction

portional tou® in the Laplace transform of EG13) is and the renormalized cosmological constant. They are re-
lated to their discrete counterparts by the relatiansx,
=a?A andta=T, wherea denotes the link length. This

~uh: % e M EQH 1=G(\,nHO°™MX), (18  diverges exactly the way one would expect from a volume
Te Ni,t

(23

gzelree ,'Ehﬁ];:e,?%?ds S;;:gmzao?hlls— ?V?r;tg?r?\?glgy?ﬁs I\;VIST a 4Let us take the opportunity to correct some misprints in 2§)

9 p p 9 T ~ of [1], which has been used in deriving formu0). The correct
expression on the right-hand side, the fackgi,t) has been  gquation reads
pulled out. In terms of quantities derived [ih], the normal-

- FZt(l_ FZ)ZB|1+|2
ized coefficient2]°™ is most easily computed as Gyl o) = —————

|th2A|[1+|2
ﬁnorm(x)_z{;iG;(x,l =170)G;( =1,y;t_’f)’ min(|1§v|:z)71 (k1) AGK
! a Gi(x,y;t) !X:y ' A& kDl k1K | B

=0
(19 whereF, A, B,, andC, are defined if1].
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t+1 TABLE I. Average numbers of diagrams per unit volume at
ordern obtained by diagram counting.

n Open Closed Disconnected Total
i-1 i i+l ' 1 3 0 0 3
FIG. 3. The triangles contributing to the weight at the veitex 2 g% 0 0 8%
term. It reiterates the conclusion ] that all macroscopic 3 43 0 0 43
mg&rieci variables scale canonically in the Lorentzian gravity , 214 14 17 218
We.conclude that in the thermodynamic limit, pinching 5 103§ 1343 1743 9973

terms will be suppressed since their number is proportionat
to N°, whereas thdconnectedl bulk diagrams behave like

~N?. For largeN, the pinch contributions must therefore Strictly speaking, the argument leading to E26) is only
factorize according to correct in the continuum limit in which “extreme pinching”

to vanishing spatial length=0 does not occuffor off-
critical \, relation(26) must be modified to account for the
fact that moves changing the torus topology are forbidden
Fortunately this is the only case we are interested in, and the
final probability distribution is therefore obtained by setting
e "=1/2 in Eq.(26), yielding

1+ 21 ﬁn(T)u”)z

1+N°Y po(THum
m=1

X

1+ NZl Dn(THU"+ O(Nz)).

(24

1
Taking the logarithm, we see that the sfit+>p,,(T)u™] p(k):p”c(k): 2K @7

~NO will only contribute a constant term to the free energy,

which does not affect the universal behavior of the mOde|F0r reasons of symmetry, the distribution of incoming time-
We will make no attempt to calculate it explicitly. Similar |ike links ati (originating at the slice at—1) is of course
considerations apply to the highexpansion of the magnetic identical. Given relatiori27), we can now compute the prob-
susceptibility in the presence of gravity. The pinch contribu-apility distribution(j) of the vertex order, i.e., of thetal
tions factorize, and we will Only need to compute the multi- numberi of links meeting at a Verte@ncoming and outgo-
plicity @ of bulk polygon graphs with two odd vertices per ing timelike and spacelike links

triangle in

X~<E Z)Ef)uni. (25) Pl)=5==. =4 28)
n=1

Our next step will be to derive the probability distribution ~ With the distribution(27) in hand, we can now embark on
of the coordination numbers in the Lorentzian gravity model,the actual counting of diagrams contributing to the suscepti-
in the thermodynamic limit as the cosmological constent  bility coefficients®{?) in Eq. (25). We will only quote the
—\.=In2. Recall that when generating an interpolating results up to orden=>5. Further details of the counting pro-
space-time between an initial and a final spatial geometrycedure will appear elsewhere. The average numbers of dia-
the geometry of each space-time “sandwich” witi=1 is  grams per trianglé.e., per unit volumgare listed in Table I.
independent of the previous one in the sense that there are fPen graphs are connected graphs without any self-
local constraints on how the numbeks=1 of timelike intersections. Closed graphs are connected graphs which are
future-pointing links can be chosen at each veitg. Hav- ~ not open. The disconnected graphs consist of two or more
ing reached a spatial slice at tinmiewe can generate the components and contribute with a minus sign.
space-time betweeh and t+1 proceeding from “left to In order to double-check our results at order 4 and 5,
right.” To each vertexi at timet we associaté; timelike ~ Where the counting becomes slightly involved, we have per-
links (ending at vertices of the subsequent spatial slice at formed a numerical check on the coefficierit§” listed
+1) and the spacelike link to the right of the vertex. Thereabove. This was done by computer-generating histories of
are therefore exactly; triangles associated with the vertex length At~100, with an initial spatial slice of lengtil
contributing with a weight factoe ™ to the action, as illus- =200, and counting diagrams of a given type. The results
trated in Fig. 3. Since the assignment of the orkleof out- ~ are given in Table Il and in very good agreement with the
going timelike links to the vertex is completely independentexact calculation. They are based on a total~e8x 10°
of the k assignments of other vertices, the probability distri-vertices at order 4 ane 9% 10° vertices at order 5. We have

bution for k outgoing future-directed links is given by not listed the counting of disconnected graphs separately,
since it follows closely the counting of closed connected
py(k)=e M\ (er—1). (26)  graphs.
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TABLE Il. Average numbers of diagrams per unit volume at 1.4 r y
ordersn=4,5 obtained numerically. 13| |
n Open Closed 12 ¢ ’ )
1.1} 1
4 214.642= 0.179 13.996+ 0.007 1B 7
5 1037.770= 0.751 134.197 0.098 AN
< 09} \\
. 08 | S ]
In order to evaluate the results from the higlexpansion, 07 L "'h;., o ) N
we assume a simple behavior of the susceptibility of the ) \
form 0.6 .
0.5 1
u\?” 0.4 . Bc N \\\ L 2
X(U)”A(l—u_c +B (29) "o 0.2 0.4 0.6 0.8 1
B
near the critical pointi;, with analytic functionsA and B.
Using the ratio methodsee, for example[10]), we have 08 ' ' '
fitted the susceptibility coefficients to 078 }
22 1 y—1 {
I’nz,_,(—z) =—|1+—]. (30) 0.76 | {‘ b
i el 0 . g
. . . . < 074 { .
Plotting the ratios r, linearly against I for n } {
el, ... Nha We have extracted the estimates given in 072 | { { |
Table 11l for the critical pointu, and the critical susceptibil- ) N {
ity exponenty. 07 | S~ e :
The estimates for the critical exponent should be com- )
pared to the exact values feifor the Ising model on a fixed, Be
. . . . . 068 1 L . d Sl L
regular lattice and on dynamically triangulated latti¢ising 0.2 022 024 026 028 0.3

spins coupled to Euclidean quantum grayityhich are
y'®9=1.75 and y%=2, respectively. The data from the B

high-T expansion clearly favory=1.75 in our model. In- FIG. 4. The critical cosmological constant as a function of the
deed, the estimates forare remarkably close to this value, |sing coupling, as measured by Monte Carlo simulatidhs 32,
given that we are working only up to order 5 in the expan-N=2048 and compared to the corresponding hifjlexpansions
sion parameteu=tanhB. The conclusion that the critical F;(8) andF,(B) at order 0 and order 6.

exponents of the Ising model coupled to Lorentzian quantum

gravity coincide with those found on regular lattices is alsogetermined the densifi(u), defined in Eq(15), by counting
supported by the Monte Carlo simulations we have perzjosed polygon graphs in the highexpansion up to order 6.

formed. Inserting this into formulg14) leads to
However, before turning to a detailed description of the
simulations we would like to illustrate how well the high-
expansion works even at this rather low order. We will com-
pare theB-dependent cosmological constani(B) defined
in Eq. (14), which can be measured directly in the Monte 35 . 263 ¢
Carlo simulation, with the same quantity obtained from the + e + o7 U
high-T expansion. Recall that in the thermodynamic limit
N\:(B) is essentially given by the spin free energy, El), In Fig. 4 we show the data points fag(8)—33/2 as mea-
which can be computed in the sm@lexpansion. We have sured by the Monte Carlo simulatiGrSincex .=In 2 in pure
gravity, the data should approaénin2 for B—0 and \
TABLE lIl. Estimates for the critical point and the critical sus- =1In 2 for 8— o, both of which are well satisfied. In order to
ceptability exponent, using the ratio method for data points up taqquantify the effect of thai expansion, we have plotted both

. 1 3 5
AT By =N+ 5In2+ SIncoshp+u’+ §u4

(31)

orderNpay the zeroth-order expressidh,(B)=\.+ 3 In2+3IncoshB
Nmax Critical point Critical exponent
3 u.=0.2488 v=1.820 The subtraction of B/2 has been performed to ensure a finite
4 u.=0.2462 vy=1.789 limit as B—o. It corresponds to using the actigh (oo
5 u.=0.2458 y=1.783 —1) in Eqg. (2), whose ground state has energy zero rather than
—3BNJ/2.
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P(Nv—) Nv+ 1)
P(Ny) ————————=P(Ny+21)P(Ny+1—Ny),
v NyKinKout

(32)

where P(N,)=e 2"Nv/N,/! is the probability distribution
FIG. 5. The move used in the Monte Carlo updating of thefor labeled triangulations, anki, andk,, count the incom-
geometry. ing and outgoing timelike links at (see Fig. 5. We are still
free to chooseP(N,,—N,+1) and P(Ny,+1—Ny) such
that condition(32) is satisfied. Once a transition probability

3 . . .
—3B and the improved sixth-order expressidf,(S3) o 5
_\"OT(6) 3 5 The latter agrees well with the easured P(Nv1—Ny), say, has been chosen, it will be tested dur

; ! - ing the simulation against the uniform probability distribu-
Montg Carlo vglues right up to_t_he nelghborhood of the CrItI'tion between 0 and 1 as follows. Choose a random number
cal Ising couplingB, . At the critical pointB, the measured

. .C . . r €]0,1]. Then, if the move isllowed (i.e., if the resulting
function;(B) exhibits a cusp. This reflects the singular part._ . : ) '
contained in(8), which of course cannot be captured by triangulation belongs to the allowed class of configurations

. . . . iti iP(Ny+1—=Ny)>r. Ifiti t all d,
simply plotting the analytic functiofi14). grlgczzzjesp:g%e (ne\)/<t mg/e v)>1. Ititis not allowed, one

It is straightforward to generalize the updating of geom-
IIl. MONTE CARLO SIMULATION etry to include Ising spins. The spin Hamiltonian is included
' ' _in P(Ny)), which now becomes a function of batk, and the
Monte Carlo simulations have been used successfully igpin configurations. When inserting a vertex one has to
the study of Euclidean 2D quantum gravity. The formalismspecify at the same time a spin associated witThe choice
known as “dynamical triangulations™ provides a regulariza- of spin up or down is made with probability 1/2, and the final
tion of the functional integral well suited for such simula- result tested as in the case of the pure geometry update.
tions, allowing in addition for a straightforward matter cou-  \We have performed the computer simulation for surfaces
pling of Gaussian fields as well as of spin degrees ofyith toroidal topology and for system sizes bf=2048,
freedom. Extensive computer simulations of the combinedj050, 8192, 16200, and 32768 triangles, and with a number
gravity-matter systems have been performed, leading to req—32, 45, 64, 90, and 128 of time slices, respectively. Since
sults in perfect agreement with exact results derived fromhe moves are not volume preserving, fixing the system size
Liouville theory and matrix model calculations. ~ to Nis implemented as follows: we allow the volume to
The Lorentzian model resembles the dynamically triangufluctuate within a certain, not too wide range, and collect for
lated model in that its dynamics is associated with thesyery sweep the first configuration with volurie The vol-
fluctuating connectivity of the triangulations contributing to yme fluctuations are controlled by adding a tefin(AN)?
the path integral. This allows us to take over many of they the action, wheré N is the deviation of the volume from
techniques from the computer simulations of the dynamicallyits desired valué\. This term does not affect the ensemble of
triangulated models. We must specify the update of both thgonfigurations collected, since for all of theAN=0. We
geometry and the matter fields, the latter being standard: fgg,q that(AN) 1~ 8. Finally, one checks that the results
a given triangulation we update the spin configurations by,piained do not depend on the chosen, allowed range of vol-
the same spin cluster algorithms used for dynamical triangugme fluctuations. A sweep is a set of approximatslyac-
lations. This presents no problems since our com_ﬂguranongepted moves. For eaghvalue used in the multihistogram-
form a subset of the full set of dynamical triangulations usedming analysis we perform 1.2510F sweeps (0.75—
in Euclidean quantum gravitfon the torug During the up- 1 oox 106 for N=32769. Measurements are made every

Qate of geometry, we want to ke_ep the num_ber of time s_liceﬁve sweeps and errors are computed by data binning.
fixed while allowing any spacelike fluctuations compatible

with the model. A local change of geometry or “move”
which is clearly ergodici.e., can generate any of the allowed
configurations when applied successiyés/shown in Fig. 5. The determination of the critical properties of the Ising
It consists in deleting the two triangles adjacent to a giverspin system coupled to Lorentzian gravity proceeds in two
spacelike link(if the resulting configuration is allowedlts  steps(see[14] for a recent, more complete discussion in the
inverse is a “split” of a given vertex and two neighboring context of 2D Euclidean quantum gravityWe first locate
timelike links into two, thereby creating a new spacelikethe critical 8 value where the system undergoes a transition
link, as well as two new triangles. This is a special case ofrom a magnetizedat large 8) to an unmagnetized phase.
the so-called “grand canonical move” sometimes used inNext, we perform simulations in the neighborhood of the
dynamical triangulation simulatiorid1,12,13 and does not critical value 8, and use finite-size scaling to determine the
preserve the total volume of space-time. critical exponents. Finite-size scaling is also very useful for
Detailed balance equations for the move can be derivedetermining the location of the critical coupling, itself,
from standard consideratiofis3]. Let N,, denote the number since a number of standard observables show a characteristic
of vertices(Ny=N/2, whereN is the number of triangle¢s behavior forgs close tog.. The following are some of the
andv a specific vertex. For pure Lorentzian gravity without observables we have used, together with their expected
matter, the equation for detailed balance reads finite-size behaviofsee[14] for a full list):

A. Numerical results for the spin system
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TABLE V. Critical value B of the Ising coupling constant
obtained from finite-size scaling.

PHYSICAL REVIEW B0 104035

TABLE V. The critical exponent L/d, extracted in various
ways from finite-size scaling.

Observable B¢, using 1de=% u.=tanhpg; Observable /dy from peak pos. /d, at peak 14dy at .
Dinjm 0.2522(2) 0.2470(2) X 0.52(2)
Diy 2 0.2520(1) 0.2468(2) Dinm 0.47(2) 0.531(2) 0.521(3)
Diy 2 0.53(1) 0.531(1) 0.520(3)

x=N({(m?)—(|m[)?)~N""%  (susceptibility, (33

©lm)| e (o dinim
D=0~ G |8 D= =G k@
n? dInm?
Dinm2=N| (€)— <<em2>>)~Nl/VdH (Dln m2= dnﬁm ).
(39

wherey andv are the critical exponents of the susceptibility
and of the divergent spin-spin correlation length, ahdis

the Hausdorff or fractal dimension of space-time. For a flat

space-time(where of coursedy=d=2), we havevd=2,
whereas for the Ising model coupled to Euclidean quantu
gravity vdy=3 (anddy~4). The internal energy density
and the magnetizatiom of the spin system are defined by

-1 dZy(B) dZy(B,H)|
©=NZy(B)  dB aH

B 1
M= NZu(B.H)

|H:O.
(36)

In order to find the critical poing., we can use the fact
that the pseudocritical coupling:(N) at volumeN is ex-
pected to behave like

(37

c
Be(N)~Bet Ny

close toB.= B, (N=w=), with c a constant. The observables
(33)—(35) all have well-defined peaks which we used for a
precise location of3:(N), with the help of multihistogram
techniques. Equatiof87) can now be used to extragt and
1/vdy . However, it is advantageous to determine firsidl{
from the peak values of Eq§34) and(35), and then substi-
tute this value into Eq.37), thus reducing the number of free

parameters in the fit. Afterwards, one can check that consis-

tent values for I¥d, are obtained from the observablésl)
and (35 at B, using multihistogramming. In our simula-
tions, 1idy extracted from the peaks was so close to th
Onsager value 1/2 that we did not hesitate to used,]/

=1/2 in Eq.(37). Leaving it as a free parameter, one obtains

consistent results, but the errorfy becomes larger. Finally,
we have determined/vdy from Eg. (33), both from the
peak values and @ (and again using multihistogramming
In Table IV we have listed th@. values extracted from
measuringD iy and Dy, vz, and assuming that id = 1/2.
For comparison with the high-results, we also give the
corresponding critical values for the expansion parameter

Similar results are obtained from the rest of the observables

we have measured.

m

Column 1 of Table V contains the values ofvil(, ex-
tracted from the peak position for all three observalfB3—
(35) by using relation37) (with free parameterg., 1/vdy,
andc). Columns 2 and 3 give 2fl,; extracted directly from
Egs.(34) and (35) by using the peak values of the observ-
ables and their values @.. Last, we give the value of
vlvdy extracted from the susceptibilif{33) in Table VI.

Comparing the estimates f@. from the highT expan-
sion and the Monte Carlo simulation, one finds good agree-
ment. The results of the simulation strongly indicate that the
critical exponents are given by the Onsager valuesd/
=1/2 andy=1.75. Again, this corroborates the conclusion
already reached by means of the hiflexpansion. Further
evidence that the system belongs to the Onsager and not the
Euclidean gravity universality class comes from measuring
the magnetization exponemt,,/vdy and the specific heat
exponenta/vdy. Their Onsager values are 1/16 and O,
whereas in Euclidean gravity they are 1/6 and/3. In our
model, the magnetization exponent determined from
(Im))g-p ~N"Pm"% was found to be Bn/vdy

=0.07q1), favoring the Onsager value 0.0625 over the Eu-

clidean gravity value 0.1666The specific heat exponent was
obtained from the finite-size scaling of the values of the spe-
cific heat peaksCy~N®"%. A power fit yields a/vdy
=0.0861(7) aty?/Npe=11.6, whereas a logarithmic fit
gives x?/Npe=1.57, supporting the conjecture that=0.

We do not have independent measurements of the critical
parameterss andd, from the spin sector alone, but we will
determine the Hausdorff dimensidg, in the next subsection
from an analysis of the geometry of Lorentzian quantum
gravity coupled to Ising spins.

B. Numerical results for the geometry

As is well known from both analytical studi¢$5,16,17
and numerous Monte Carlo simulatiofj48,16] and refer-
ences in[13)), finite-size scaling is a powerful tool for de-

PTermining the fractal space-time structure of two-dimensional

Euclidean quantum gravity. The same technique can be used
to investigate the geometric properties of two-dimensional
Lorentzian quantum gravity.

TABLE VI. The critical exponenty/ vdy obtained from finite-
size scaling of the susceptibility.

Observable Value at peak Value @¢

0.883(1) 0.899(2)

X
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In a given triangulation, we define the distance between TABLE VII. The Hausdorff dimensiordy,, obtained from the
two vertices as the minimal length of a connected path ofsing model scaling aB. (column 3, at 8.(N) (column 2, and
links between them. In 2D Euclidean quantum gravity thisfrom pure gravity(column 3.
notion of distance becomes proportional to the true geodesi€
distance between the vertices in the infinite-volume limit. dy
We will assume this is also true for the present model. All 1 1 _
diffeomorphism-invariant correlation funpctions of matter JPoorvable €=z, B=h. o=z AALN) c=0

fields must be functions of this geodesic distance. Both the n, 2.005) 2.005) 2.034)
geodesic distance and the fractal dimension appear in thes,, 1.925) 2.082)
expression for the volume, Sdown 2.203) 2.072)
2.1 2.2
N(r)~r9% for r<NYu, (38) S 2.0;33 2.022
which denotes the number of vertices triangle$ inside a SV 2.004) 2.003) 2.003)
ball (a disk in dimension Rof link radiusr. If n,(r) denotes
the number of vertices at distancdrom a fixed vertexv, ) ) )
relation (38) implies that the shifta,, we obtained the estimate4<a,<—1. Unfor-
tunately, our statistics was not good enough to determine it
ny(r)~rd=1 for r<NYH, (399  with more accuracy. However, the fact that it is nonvanish-

ing justifies its introduction in the first place. After a suitable
Finite-size scaling for an observabAghen leads to a scaling normalization, we expect the volume distribution to behave
of the correlation function integrated over all points at dis-like
tancer from a vertex according to

(A(NA(0))y~NIMH=3aF  (x), x=r/NYH_ (40) S~ f(I/NYdn). (42)

The factorN'~ Y4 comes from the integration over points at __ .
distancer from vertexv, using Eq.(39), while A, is the  Figure 6 demonstrates clearly that for the Ising modeB at
genuine dynamical exponent of the correlator. =P, SM() scales as anticipated when we dgt=2.0. Scal-
By measuring correlation functions for various volumesing the Ising distributions ag=g.(N), the pseudocritical
N, one can determingy, and the critical exponents. We will Point of the magnetic susceptibility, or considering pure
concentrate here on the Hausdorff dimensipn One first ~ gravity leads to similar results. _
rescales the height of the measured distributions We conclude from Table VII that the Hausdorff dimen-
(A(r)A(0))y to a common value. However, the distributions Sion of 2D Lorentzian quantum gravity is close to the _flat-
measured for differenh will still have different widths as ~SPace valuely=2. This is clearly different from the Euclid-
functions ofr. By appropriately rescaling they can then be €an situation, which is characterized hl,=4 for pure
made to overlap in a single, universal functiBp(x). From  gravity anddy=4 in the presence of a single Ising spin
a technical point of view it is important to work with the model. The results for the Lorentzian gravity-matter system

shifted variable are particularly convincing for the purely geometric observ-
ablesn,(r) and S\1), which basically coincide with the
r+ap corresponding measurements obtained in Lorentzian pure

X= N1 (41)  gravity.

where the shifa, may depend on the observal#le Using 1.2

Eq. (41) takes into account in an efficient way the major part

of the short-distance lattice artifacts, as has been discussed 1r

carefully in[19,16,17. Applying standard procedures from

Euclidean 2D quantum gravity then leads to the results sum- 08|

marized in Table VII. The observables appearing in Table _

VIl are (i) the numbem,(r) of vertices at a giver{link) 5 0.6

distance from a fixed vertexv, which may be viewed as the

correlation function of the unit operator in quantum gravity 047

[15]; (i) the numbers,,(r) of spins at distance from a

vertexv which are aligned with the spin at (iii) the num- 0.2 |

ber syowr(r) Of spins with orientation opposite to the spin at

v; (iv) the spin-spin correlation functios(r) between ver- 0 05 ] 15 5 o5

tices separated by a geodesic distancdv) the function
S(r), obtained by integrating(r) over all vertices at dis-
tancer from a vertexv; (vi) the distributionS\(I) of spatial FIG. 6. The distribution of spatial volumed\(l) at 8=,
volumes, withl denoting the length of a given time slice. For rescaled according to E¢42). We have setl,=2.0.

I/N1/dh
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IV. CONCLUSIONS flipped relative to that of the “parent” universe at almost no

. . . cost in energy since the “baby” and the “parent” are con-

~We have presented compelling evidence, coming from & ecteq only by a thin tube. The geometry of two-dimensional

high-T expansion as well as Monte Carlo simulations, thatgclidean quantum gravity is very fractal, with many

the critical exponents of the Ising model coupled to Lorent-“pinches” at all scales, leading to typical spin configurations

zian gravity are identical to the exponents in flat space. Thishat look very different from those on flat space-time. More-
is in contrast with the situation in Euclidean graviiye.,  over, the presence of Ising spins on the surface effectively
Liouville gravity), where the exponents chang&imilarly, ~ enhances the fractal baby universe structure since it is ex-

the fractal dimension of space-time is unchanged in thé&ctly the lowest-energy spin configuratiofepart from the

Lorentzian model after coupling it to a conformal field 9round statethat involve baby universes. The interaction

theory (the Ising model at the critical pointin Euclidean becomes so strong that it tears the surface apart when we

gravity the fractal properties of space-time are in general %Zgrr)rlnitrn;o[rehitsh?sn t?]v(\eloo:isé;?ng o?ptlr?: ft:mtgli?tvﬁ:_lol;(:llmg?i? nal
funcuoE of th&a centraI"change offthe conformla:jflelr(]j theory'two-dimensional Euclidean quantum gravity.
From the evidence collected so far, we conclude that matter once the creation of baby universes is disallowed, as in

and geometry couple weakly in Lorentzian gravity andthe case of the Lorentzian model, the coupling between mat-
strongly in Euclidean gravity. ter and geometry becomes weak, and the matter theory has
For the case of the Ising model, this difference can behe same critical exponents as in flat space-time. This hap-
explained in more detail in geometric terms. As mentionedoens although the typical space-time geometry is by no
earlier, it has been shown [i] that the difference between means flat, a fact we have already emphasized in the Intro-
Euclidean and Lorentzian gravity is related to the presence duction, and which is illustrated by Fig. 1. On the contrary,
absence of baby universes. On the other hand, it is by noRUr mod_el allows_ for maximal quc_tuations of the_s_pat_ial vol-
well understood that baby universes are at the source of tHgme which can jump frontessentially zero to infinity in a
strong coupling between spins and geometry. This can ha@ngle time step. However, as we have been able to demon-

pen because the spin configuration of a baby universe can [5&rate, such violent fluctuations of the two-geometry are still
not sufficient to induce a change in the critical exponents of

the Ising model. From the above arguments it seems likely

_ _ that Lorentzian gravity can avoid the=1 barrier. This
5The ex_ponents of the Ising model coupled to _2D Euclidean _quanEquestion is presently under investigatigto).

tum gravity are equal to those of the 3D spherical model. It is not

understood whether this is a coincidence. More generally, the ex- ACKNOWLEDGMENTS
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