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We analyze the double scaling limit of unitary matrix models in terms of trigonometric
orthogonal polynomials on the circle. In particular we find a compact formulation of the
string equation at the kth multicritical point in terms of pseudedifferential operators and
a corresponding action principle. We also relate this approach to the mKdV hierarchy
which appears in the analysis in terms of conventional orthogonal polynomials on the

circle.

1. Introduction

Random matrix models provide an elegant and powerful way to study the dynamics
of random surfaces.!~* Random surfaces themselves appear in a wide variety of
physical problems.® They correspond to statistical mechanical models in which the
background geometry is allowed to fluctuate. The fluctuations of the geometry
itself is characteristic of theories of gravity and thus one is really studying matter
coupled to two-dimensional gravity. The simplest models (one-matrix models) are
defined by a partition function which is a finite-dimensional ordinary integral over
an N X N-matrix M

Z = /DM exp {——-1; Tr V(M)} . ®

Different models correspond to different classes of matrices M and different uni-
versality classes of potentials V(M). The best understood case is when M is Her-
mitian. The integral (1) may then be expanded in a double power series in 1/N?
and the coupling constant A, and generates a set of Feynman diagrams which are
dual to a discrete triangulation of a random manifold. Given powers of N corre-
spond to surfaces of fixed genus. The partition function Z may be evaluated in
the large-N (planar) limit,® corresponding to spherical topology. In string theory,
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and perhaps in 2D-gravity, one is interested in summing the complete topological
expansion. This may be done via the “double scaling” continuum limit in which
A is tuned to a critical value A, and N tends to infinity with the scaling variable
7 = (Ac — A)N2#/(2+41) fixed.”~® The order of multicriticality is then k.'® The case
k = 2 corresponds to pure 2D-gravity. N is then related to Newton’s constant Gy
(N = ¢'/4Go) and ) to the cosmological constant p (A = e™*). To reach the kth
multicritical point requires a potential of order at least 2k for even potentials. In
the double scaling limit the specific heat fi (second derivative of Z with respect
to z) is determined by a nonlinear differential equation of order 2k — 2. At crit-
icality, however, the potential Vj for even-order multicritical points is unbounded
from below and Z; is not well-defined. This problem does not exist for odd-order
multicritical points.1:12

Another case of great interest is that of unitary matrices U

- /DU exp {—% Tr V(U)} : (2)

This may be considered as a model of pure two-dimensional QCD.!1¢ It has the
virtue of being well-defined at all multicritical points since the integration domain is
compact. Ultimately one would like to formulate four-dimensional QCD as a matrix
model corresponding to sums over world-sheets of string-like chromo-electric flux
tubes. It is hoped that the double scaling limit of (2) will yield some new insights
into this problem.!®

In this paper we give a differential operator formulation of the continuum limit
of (2) and the associated string equation mimicking as closely as possible the analy-
sis of the Hermitian model. The organization of the paper is the following. Section
92 introduces some technical machinery, particularly orthogonal polynomials, ap-
propriate for analyzing unitary matrix models. In Sec. 3 the continuum limit is
carefully defined. In Sec. 4 we analyze the string equation for the kth multicritical
point. In Sec. b an action principle is given for the string equation of Sec. 4 and
the relation to the mKdV hierarchy is derived. Finally we conclude and list open
problems.

2. Unitary Matrix Models

We will consider symmetric unitary matrix models of the form!5-17
Z%:/DUexp{m]—;{'hV(U+UT)} , (3)
where
LGEDIITIAR (4)
k>0

and DU is the Haar measure for the unitary group. It is easy to show that z%
reduces to

ZN——/HQCZ; |A(2)]Pexp {~———ZV(z,+z )} , )
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where A(z) is the Vandermonde determinant
A =[] - 2) (6)
k<y

and z;, the eigenvalues of U, live on the unit circle. The inner product is defined as
a contour integral over the unit circle

(A(2), B(2)) = f{ Qi’;zﬁ(z)B(z)exp {—%V(z + z*)}
= /dpfi(z)B(z) . (M)
Introducing orthogonal polynomials with respect to this inner product
(Pu(2), Pn(2)) = hnbn,m (8)
one can show that the P,(2) obey a recursion relation
2Pa(2) = Ppy1(z) — Spz" Pa(1/2) (9
with
S2=1- h;‘l—:l . (10)

The partition function is as usual given by

N-1 N-1
zZ% =] m=Jf1-sH" (11)
i=0

i=0

and is thus determined by the recursion coefficients S, of the multiplication operator
z. The dependence of S, on the coeflicients gy of the potential V is easily shown to
be described by the integral flows of the modified Volterra hierarchy,!® the simplest
flow being

08n
on
In the continuum limit the modified Volterra hierarchy becomes the modified KdV
(mKdV) hierarchy. We will return to this later.

By taking appropriate linear combinations of the orthogonal polynomials { P, (z),
P?(z2)} which preserve the measure factor |A(z)|2, it is possible to find an alternative
trigonometric basis of orthogonal polynomials!® of the form

Sn= == = —(1= SE)(Sn+1 = Su-1) - (12)

cf = 2" + a,,,,,_lz"_l +...+ an,n_lz'““ +z"

= :{:cf(z_l) , (13)

where 7 is an integer for U(2N + 1) and a half integer for U(2N). The attractive
feature of these polynomials is that they satisfy a three term recursion relation
analogous to that of the Hermitian matrix model

z+cf(z) = Cf+1(z) - "r%crf(z) + Rfcf—l(z) ) (14)



Mod. Phys. Lett. A 1991.06:2727-2739. Downloaded from www.worldscientific.com
by EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) on 08/02/13. For persona use only.

2730 K. N. Anagnostopoulos, M. J. Bowick & N. Ishibashi

—et(2) = o (2) - ¢EeF (2) - QEcT_ (o), (15)

where z4 = z £ 1/z. Let us denote the norms of c(z) by et

(cE,ct) = eﬁ&f’i . (16)

m ,m

The integrable flows analogous to the modified Volterra hierarchy are now those of
the Toda chain on the half line?

244
O%n _ ot,.-a% _ ot-et, (17)
891

The norms €%+ are related to the norms hn of the P,(z) polynomials by

e‘ﬁ‘\: = 2(1 + Szn.—l)h2n—1 (18)
and +
e¢0 = hg . (19)
Then one finds that
R;i: - e(*ﬁf"‘#f—x) =(1FS;m-1)(1—- S%n_.g)(l + S3n-3) , (20)
8 +
T'i: = c';f]'l‘ = iSZn(l + S2n—1) + S2n—2(1 + Szﬂ‘l) (21)
and £ .F
Q,i, = (85 -¢T) (15F San-1)(1 = S%,_,)(1 F San_3) . (22)

Using the relation [z4,2.] = 0 one can show that

+ _ (Qn+1 . Qf) + ( n+1 Ri)
I = rE —rf
= F(1 F Son-1)(S2n + San-2) . (23)

Next, we compute the action of the operator z8, = 2(8/0z) on the ¢ basis. One
finds that

k
z0,¢F = nct + E T InperCi_y (24)
where
(F)ner = ¢ [ (e ) 0.V (2 )k (25)

and k is the highest power of z; in the potential. For k = 1, for example, the above
relation becomes

20;¢E = ne¥ — -——Q cFy . (26)
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The operator 28, acting on ¢t is not Hermitian and is not appropriate for taking

the continuum limit. We need to compute instead the action of 28, on a basis of
functions 7% orthonormal with respect to the “flat” measure dz/(27iz). Therefore
we define

T (2) = ¥R 2 KV 46k (2) (27)

and find that

(FE @) = o (A () (4 () = 5 (28)

The recursion relations (14) and (15) become

2172 (2) = \[REmk, 1 (2) = rE () + VEERE,(2) |
7t (2) = /@y (2) — *\/%ﬁ(z)—\/b?w,f_l(z). (29)

The action of the operator z8, on the 7¥(z) basis is found to be

k
20,1E(2) = = - 3 (0 e TEyr () + A GF N oy s
zln 2 z Inntrintr .an 2/\ nn ¢ Ty (z)
r=1

k
+ g3 0 (2 (30)
where
() niner = § oo (7 ()" (20, V (2 ) (2) (31)

The k = 1 case now becomes

N N QX
0, (2) = = o JQ@EEa () + (n+ o1at )/ Bnt 2

Q#Trr:r—l(z) . (32)

It is easy to check that the above operator is Hermitian. The string equation is now
derived from the relation® {28, z4] = —25.1%?! We are now ready to calculate the
continuum limit of the operators z8, and z4 near the critical region.

3. The Continuum Limit

In this section we wish to study the continuum limit of the operators z4. and 20,
as defined in (29) and (30). At the discrete level, the above mentioned operators

BWe use the convention here that Ox,=0.m%m, for O any of the operators z8, or zx. The
skew-Hermitian character of z_ then leads to the minus sign on the right-hand side of the string
equation.
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act on an infinite-dimensional inner product space of complex functions on the unit
circle, spanned by the functions 7% defined in (27). Taking the continuum limit
means letting N — co. But N appears only as the limit of the product (11). In
the continuum limit, therefore, only the indices n in a small neighborhood of N will
contribute to the singular part of Z5. For the kth multicritical point the relevant
index space is described by the scaling variable!:17:22,23

t= (1 - %)N”/(““) : (33)

The double scaling limit ansatz of Refs. 16 and 17 entails taking A — A, according
to the scaling relation

= (1 B X/\_> N2H/(2E41) (34)

c

and scaling the recursion coefficients S, of (10) as
San — f(t, 2) N~/ (2k+1) (35)

where f2(0, z) is the specific heat of the unitary matrix model. Then the elements
of the space spanned by the functions 7 and all quantities defined in the previous
section become functions of ¢ and 2. The operators, (29) and (30), have non-zero
matrix elements (z4)m,n and (28;)m,a, only for /m —n| < 1 and |m — n| < 2k
respectively. Therefore in the continuum limit they become finite order differential
operators.? Using the scaling of equations (33)~(35), the Taylor expansions

Sonm — Nl/(2k+1)f<t + %Nzk/(2k+1))z>

= N—l/(2k+1)f(t + _T2T_‘N~1/(2k+1),z)
= NTUOHDL(, ) + SN2

"1
+ (g) _TTN(—r+1)/(2k+1)f(")(t,z)+ s (36)

and
15 (2) = 15 (2) + mN'I/(Z"“)(wf(z))' +...
m ., .
+p NTCECRD ()0 1 (37)
and Eqs. (18)-(23), we find that
Qf(t, z)=1F 2N—1/(2k+1)f(t’ 2) F 2N—2/(2k+1)fl(t)z) + 0(N~3/(2k+1)) ’
Rf(t, zy=1+ N_2/(2k+1)(:hf'(t,z) . 2f2(t,z)) + 0(N~3/(2k+1)) ,
ra(t,2) = N7HOHO(37(,2) + 2£2) + O(N—3/ (24D |
g (t,2) = FAN D (1, 2) 4 N=HCHD(E 710, 2)
+2f3(t, 2)) + O(N 4Dy (38)
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Substituting into Eq. (29) and keeping terms of order N ~2/(2k+1) anq N -1/(2k+1)
respectively we obtain

2y — 2+N_2/(2k+1)Q+, 2 — _N—l/(2k+1)Q_ , (39)

where Q4 are given by

Q. = 8 — v’ — v? 0
+ = 0 6,2+v'-—v2 )

0 8+
Q_:2<8t—v ‘0”). (40)

In the above formula v = —2f, 8; = §/0t and z4 act on the column vector (""J‘r )

In the continuum limit the operator 28, becomes
1
28, — ;~N1/(2’°+1>7D,c : (41)
k

The matrix operator Py has the form
0 P,

Pr = 8,”‘ +P}c,2k_.18¢2k_1 + .o a(t+ Z) . (43)

The coefficient ar may be calculated from the action of 28, given in Eq. (30) and
the k-multicritical potentials found in Ref. 17. The result is

with

k
_ B(k+ 1,k +1)
1 112k )
= 2(2k + 1 -1)4 .
a =22+ )TL:;( A T By v ey (44)
The computation of P, is straightforward, but becomes quite tedious for high values
of k. For k = 1, for example, a; = —2 and the explicit form of z8, is
20, — —s NP, | (45)
where P, is given by
(0 Py
with 1
P, :8,2+v0t+~2—(v'—v2)+2(t+z). (47)

The calculation is done by substituting Egs. (36)—(38) into Eq. (32). The value of
Ac is found by using the string equation!®

2n+41

A=7—5%0 = San(Sans1+ San-1)(1 - §3,) - (48)
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By letting n — N and Sy, — S (spherical limit), we obtain 215% = 25%(1 — $?)
or A =1 —~S?, As the critical solutions for the kth multicritical point are given by
A = A (1 — S$%*), we deduce that A\ = 1. In the above computation we have used
the minimal k = 1 potential V(24) = 24.

The string equation is computed from [20,,24+] = —z¢. As expected, we find
that v obeys

%afv(t,z) —o(t,2)3 = —du(t,2) (t+2) . (49)

Therefore v is a function of £ = t + 2 and is a solution of
%v”(z) —o(z)® = —dv(o)z , (50)

which is the Painlevé II equation.

As already noted, the computation of 28, and of the string equation following the
steps described above is quite tedious for general k. In the next section we describe
a more elegant way of computing them that will give the operator formalism for the
unitary matrix models and its relation to the mKdV hierarchy.

4. The Operator Formalism and the String Equation

In this section we present the form of the operator P; of Eqgs. (45) and (46) and of
the string equation (50) for general k. We find that Py is given as the positive part
of a pseudodifferential operator as in the case of the Hermitian one-matrix model?
and that the string equation is closely related to the mKdV hierarchy as in Ref. 17.
The string equation [28;, 24] = —zz in terms of the operators Py, @+ is given by

(20:,24] = —2z- = [Pr, Q4] = 0 Q-
= Py(D — v)(D +v) — (D + v)(D — v)Pg = 2a,(D + v) (51)

and

[20;,2-] = —2z4 = [Pr, Q-] = 2a
= Pk(D—-‘v)-— (D+v)PI: = ag
PL(D+v)— (D—v)Pr=a, (52)

where D = 8/8z.
It is convenient to write the above equations in terms of

P=P+auX, (53)

) 0w

Then Eqgs. (51) and (52) become

where

Pi(D — v)(D + v) — (D + v)(D — v)Py, = 2ay(vz)’ (55)
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and

Pi(D —v)— (D + u)f’;c = —2apvz ,
Pl(D +v) — (D - v)Py = 2a3vz . (56)

Eliminating I3k(l3k) yields Eq. (65) and its Hermitian conjugate respectively. The
left-hand side of Egs. (56) are differential operators of order 2k. We get, therefore, a
total of 4k + 2 equations, which is an overdetermined system of differential equations
for the 2k + 1 functions p¢ ¢ and v. By checking the first few values of k we find
that, remarkably, only 2k + 1 of them are independent. We conjecture that this
is true for all k, although we have no general proof. If this is the case, Eq. (56)
uniquely determines the operator P and the string equation.

It is instructive to examine the k = 1 case in this formalism. First note that in
this case Egs. (47) and (53) give

P, =D?+vD+ -;—(v’ —v%)
={(D+v)Ai}+, (57)

where A; = [(D — v)(D + v)]*/?, and as usual {...}, denotes the differential part
of the pseudodifferential operator in the brackets. An obvious generalization of
Eq. (57) for the kth multicritical point is

P = {(D+v)Ak}+ , (58)
where

Ap =[(D —v)(D + v)]F-1/?

= D% 4 ik aD* 2+ b gro+ feaD7H A+ fraDTP 4L
(59)

P} is then a differential operator of order 2k as in Eq. (43). Equation (59) then
determines the coefficients py; and Eq. (56) gives two copies of the string equation
for the function v. The latter is found to be

(Res Ax) +2(Res Ap)v = 2apvez (60)
where Res Ay, = fi 1. Note that because Res A; = 1/2(v' — v?), Eq. (60) trivially
gives Eq. (50)

For the derivation of Eq. (60), we observe that the trivial equations

(D + v)Ak(D - ’U) - (D -+ U)Ak(D —_ 'U) =0

and

O0=04+0..
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for any pseudodifferential operator O give
Pi(D—v)— (D +v)Pl = ~{(D+v)4s}-(D—v) + (D +v){Ax(D - v)}- . (61)

Since the only overlap of the pseudodifferential operators on each side of Eq. (61)
is the constant part this establishes that the left-hand side of Eq. (61) is a purely
multiplicative operator in the ring of pseudodifferential operators. Computing the
right-hand side of Eq. (61) and equating it to that of Eq. (56) we obtain the string
equation (60).

5. The Relation to the mKdV Hierarchy and the Action Principle

In this section we discuss the relation between Eq. (60) and the mKdV hierarchy
and we find an action principle from which Eq. (60) is derived.?® A simple way to
see that Eq. (60) is related to the mKdV hierarchy is the following. First observe
that

(D=v)(D+v) =D+ (v ~v¥)=D?—u, (62)
where u is related to v by the Miura transformation?6:19

u=vZ—1 . (63)

It is a standard result that

k
Ak - (D2 _ u)k—1/2 - Z {62{_1,D2i_1}

2k—1
= D¥-1 —4—{u,D2’°"3} .o+ {Re[u, D"} + ... . (64)
Therefore
Res Ap = 2Ry [u] . (65)

The Gelfand-Dikii potentials Ry [u] are defined through the recursion relation
DRy1fu] = MV Ry [u], Rolu) = % : (66)
where MX4V = 1/4D3 — 1/2(Du+ uD). The K4V flows are given by
u, + MXVR [u] =0 . (67)
The mKdV flows are similarly generated by the potentials®?
DRIEIV[y) = MmKdV pmKdV,)  pmKdV,) (68)

and are given by
vy, + MTEVRIKAVE g (69)
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The operator M™KV = 1/9D3 — 202D — v’ 4+ 2/'D" 1 = 1/2D3 — (v*D +
Dv?) + 2v'D~1y'. With the normalization chosen M™K4V RPKdV[y] is equal to the
derivative of the left-hand side of Eq. (50).

Using the Miura transformation Eq. (63) we find that

RPKIVIy] = 282 (20REYV o] + DREIV[u]) . (70)

Comparing with Eq. (60) and Eq. (65) we can write the string equation in the
form1"23

REVIv] = 2" 2qpve . (71)
In order to see the relation of Eq. (71) with the one given in Ref. 17, one must use
Eq. (68) and RPKIV[y] = 1/2v" —20?

arvr = R;,“fldv[v]

::I)_IAImKdV}ﬂ?KdV[v]
— (D—leKdV)k—lR;anV[U]
— D—l (MmKdVDnl)k—lDR;anV[v]

= DT'DEG! (—;-v"’ - 3u%'> (72)

2k-2

where Dpg = (M™X4VD~1) = 1/2D? —2v2 ~2v'D~1y, This is, up to rescalings, the
form of the string equation for the kth multicritical point given in Ref. 17. From the
third line of Eq. (72) we see that an alternative way of writing the string equation

is
2¥~2gpvz = DF-1RPKAV[y] | (73)

where D = (D" M™K4Y) = 1/2D? — 202 + 20D~ 10",
It is remarkable that we can write an action principle quite similar to the one
of the Hermitian one-matrix model. Using the relation

a% / do Riys[u] = — (k + %)Rk[u] , (74)
we find that by minimizing the action
I= /dz {ResAHl + ay (k + %)tﬁx} , (75)
we obtain the string equation (60). Indeed using (63), (65), (74) we get
§I = —(2k + 1)/dz(Rk[u]6u — apvzby)
= —(2k + 1)/dz(Rk[u](2v6v — §v') — ayvzév)

=—-(2k+1) / dz(2vRg[u] + DRy [u] — akvz)bv
~0. (76)
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Conclusions

We have seen that the basis of trigonometric orthogonal polynomials on the cir-
cle allows an analysis of unitary matrix models which closely parallels that of the
Hermitian models. There is a finite-term recursion relation for the multiplication
operators z4+ and the derivative operator z8; which leads in the continuum limit
to an explicit representation in terms of pseudodifferential operators. The string
equation has a simple formulation in terms of these operators and follows from an
elegant action principle. The most pressing open problem is to find a world-sheet
interpretation of unitary matrix models analogous to that of 2D-gravity coupled to
(p, q) conformal matter in the case of the Hermitian models. In this respect some
of the recent results of Minahan?® are interesting.
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