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Notation

N = {0, 1, 2, . . .}: natural numbers
Nn = {1, 2, . . . , n}: natural numbers up to n, ∀n ∈ N
Z = {. . . ,−3,−2− 1, 0,+1,+2,+3, . . .}: integer numbers
N∗ = Z+ = N \ {0}: natural numbers not including 0
Z∗ = Z \ {0}: integer number not including 0
Zn = Z/nZ = {0, 1, . . . , n− 1}, ∀n ∈ N∗

Q: rational numbers
Q∗ = Q \ {0}: rational numbers not including 0

R = ]−∞,+∞[ : real numbers
R∗ = R \ {0} = ]−∞, 0[∪ ]0,∞[: non-zero real numbers
R+ = ]0,+∞[ :1 non–negative real numbers
R = [−∞,+∞] = R ∪ {∞}:2 compact real numbers
R+ = [0,+∞] = {0} ∪ R+ ∪ {∞}:3 compact non–negative real numbers

C: complex numbers with ı denoting the imaginary unit
C∗ = C \ {0 + ı0}: non-zero complex numbers
C: compact complex numbers

a, b, c, . . . ,: lowercase Latin letters either denote set elements or functions
α, β, γ, . . .: lowercase Greek letters either denote set functions or random variables or stochastic processes
A,B,C, . . .: uppercase Latin letters denote sets or random variables or stochastic processes
A,B, C, . . .: calligraphic Latin letters denote collections of sets
A,B,C, . . .: Fraktur Latin letters denote families of collections of sets

10 is not included to form an Abelian group under multiplication, also the range of log.
2∞ is really one topologically, reachable from either positive of negative real numbers.
30 can now be included under the group multiplication with ∞ its multiplicative inverse.
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Introduction

Superstring theory has been studied intensively as a unified theory that includes quantum gravity. The theory is defined in
10 spacetime dimensions and the connection to the real world — where only 4 dimensions are macroscopic — is realized via
compactification of the extra dimensions. How this can actually occur has been investigated perturbatively by using D–brane
configurations as a background, leading to tremendously many vacua giving rise to the so–called string landscape. Clearly,
it is important to see if this picture remains valid when the issue is addressed in a non–perturbative manner.

The type IIB matrix model, also known as the IKKT model [1], is regarded as one of the most promising candidates for a
non–perturbative formulation of superstring theory. The model is defined by dimensionally reducing either 10–dimensional
N = 1 super Yang–Mills theory to 0 dimensions or the N = 2 type IIB superstring Green–Schwartz formulation in the Schild
gauge [2, 3, 4]. Therefore, spacetime does not exist a priori in this model. The eigenvalues of the bosonic matrices stand as the
spacetime coordinates, inferring that spacetime is generated dynamically from the bosonic degrees of freedom of the matrices
[5]. Since type IIB superstring theory is defined in 10 dimensions, it is important to understand how our 4–dimensional
spacetime emerges by studying this model, hinting that compactifications of extra dynamics is an non–perturbative inherent
property of type IIB superstring theory dynamics.

Various attempts have been made to address the emergence of 4–dimensional spacetime from the 10–dimensional background
of type IIB superstring theory. In the Lorentzian version of the IKKT matrix model, the indices are contracted by the
Minkowski metric

η =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 · · ·

+1 · · ·
...

...
. . .

...

· · · +1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and the action has the SO9+1 Lorentzian symmetry.1 The bosonic action is unbounded from below, making the (unmodified)
study of the Lorentzian model a priory difficult, which is why efforts have been focused on the Euclidean version [6, 7, 8, 9,
10, 11, 12, 13, 14, 15] instead, defined by making a Wick rotation with respect to (analytical continuation to) the temporal
direction, and contracting the indices by the Euclidean metric

1 =

⎛⎜⎜⎜⎜⎜⎜⎝
+1 · · ·

+1 · · ·
...

...
. . .

...

· · · +1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Euclidean version has the SO10 rotational symmetry instead of the Lorentzian SO9+1, and it is amenable to numerical
simulations because the partition function is finite without any cutoffs [16, 17]. However, it suffers from a severe sign problem,
which appears after integrating out the fermions. The complex Pfaffian,2 stemming from integrating the fermion degrees of
freedom out the model into an effective bosonic model, plays a central role in the spontaneous symmetry breaking (SSB)
of the SO10 rotational symmetry [19, 20]. In models where there are no fermionic degrees of freedom, like the bosonic
model, or the Pfaffian is real positive, like in the 4–dimensional supersymmetric toy model, there is no SSB of the rotational
symmetry [6, 7, 21]. There is no SSB, either, in the phase–quenched model, which omits the complex phase of the Pfaffian
[13], implying that the SSB of the rotational symmetry might be an effect of the model complex phase, warranting its study
1Which is a (hyperbolic–rotational) subgroup of the Poincaré group of Minkowski spacetime symmetries.
2Which is a determinant in the simplified 4–dimensional [18] or 6–dimensional supersymmetric models [14]).
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Introduction

by re–weighting for instance, in which case the important configurations are generally different between the original model
and its phase–quenched counterpart, leading to a severe overlap problem. To reduce this problem, the factorization method
[9, 10, 11, 12, 13] simulates a constrained system, in which the expectation value of the phase factor is calculated to determine
the true vacuum. The results are consistent with the SSB pattern of SO10 → SO3 predicted using the Gaussian expansion
method (GEM) [22, 23]. While this is an interesting dynamic property, its relevance to the emergence of a 4–dimensional
spacetime is unclear.3

This observation led to Monte Carlo simulations of the Lorentzian IKKT model [24, 25, 26, 27]. The problem of the unbounded
bosonic action was solved using separate cutoffs in the temporal and spatial directions [24]. Although the Pfaffian is real,
the model has a severe sign problem as well, due to the bosonic part of the action Sboson , which appears with a factor
exp ıSboson in the partition function. To avoid it, the authors in [24] used an approximation, and they found that 3 out of 9
spatial dimensions start to expand after a critical time. That moment — which results from the dynamics of the model —
may be identified as the birth of the universe. Later works [25, 26] computed the expansion rate of the universe numerically,
which starts with an exponential–law expansion at early times, followed by a power–law expansion at late times. However,
the authors in [27] found that it is simply an effect of the domination of almost 3–dimensional configurations with a singular
Pauli–matrix structure, because of the approximation.

Monte Carlo methods have been playing a crucial role in non–perturbative studies of quantum field theories and statistical
systems relevant to particle, nuclear and condensed matter physics. However, in many interesting cases, it happens that such
methods cannot be applied straightforwardly because the effective Boltzmann weight appearing in expectation values of the
form

⟨O⟩ =
∫︂
Odw

can become negative or even complex. A brute–force method would be to use the absolute value |w| of the weight in generating
configurations and to treat the phase as an observable,4

⟨O⟩ = ⟨O exp ı argw⟩0
⟨exp ı argw⟩0

,

with
⟨O⟩0 =

∫︂
Od|w|.

This re–weighting method indeed works for small systems, but the computational complexity is exponential to the system
size due to huge cancellations among configurations, which is commonly referred to as the sign problem.

In recent years there has been major progress in evading the sign problem by complexifying the dynamical variables, which
are supposed to be real in the original system, leading to the development of two approaches:

• The generalized Lefschetz–thimble method [28, 29, 30, 31], which amounts to deforming the integration contour in such
a way that the complex phase argw becomes mild enough to be handled by the re–weighting method.

• The complex Langevin method (CLM) [32, 33], which attempts to define a stochastic process for the complexified
variables so that the expectation values with respect to this process are equal to the expectation values defined in the
original system, extending the idea of stochastic quantization [34].

In both approaches, holomorphy plays a crucial role. The advantage of the CLM compared to the other one, is that it is
computationally less costly, which enables its application to much larger system size. The disadvantage, on the other hand,
is that the equivalence to the original system is non–trivial. Progress in this direction was made by clarifying the conditions
for the equivalence [35, 36, 37, 38, 39, 40] and by inventing new techniques that made it possible to meet these conditions
for a larger space of parameters [18, 41, 42, 43, 44, 45, 46, 47].

In this work [14, 15] we applied the CLM to the Euclidean version of the type IIB matrix model, and reproduced the SSB of
the SO10 symmetry to SO3. The application of the CLM to the Lorentzian version [48, 49, 50] may elucidate the spacetime
structure that emerges when we exclude the approximation to avoid the sign problem. While this is still an ongoing work,
there are some preliminary results [50] that look quite promising.
3A priori the 3–dimensional surviving symmetry contradicts the 4–dimensional ansatz, however remembering that this is a Euclidean model result,

it becomes unclear if this is only part of the SSB that is sought for. For example, this surviving 3–dimensional symmetry may simply correspond
to the spacial part of the expected 4–dimensional spacetime.

4∀w = exp z ∈ C formally, its modulus is |w| = expℜz and its phase is argw = ℑz.
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This thesis is structured as:

Part I includes a pedagogical preview of the mathematical machinery behind stochastic calculus, which is the foundation of
the methodology studied. This part should be skipped to chapter 4 for readers familiar with measure and probability
theory and or stochastic calculous.

chapter 1 presents the fundamental mathematical structures used throughout this thesis, mainly to establish a nota-
tional convention as much as revise core concepts. This includes

• elements of abstract algebra

• elements of analysis and related topics of general topology and metric spaces

• elements of differential geometry and connections to algebra

chapter 2 moves on to develop the core concepts behind probability theory and how they extend to stochastic pro-
cesses. The starting point is elements of measure theory and how it expands into an applicable theory of probability,
which stands as the groundwork for defining stochastic properties.

chapter 3 expands on the topic of stochastic differential equations and technical issues behind solving them into
stochastic processes that are “well–behaved”. Stochastic calculus stems from merging notions of analysis with that
of measure theory. Only elements roughly relevant to the Langevin equation are presented here.

chapter 4 applies aforementioned mathematical background in the context of complex stochastic differential equations
and processes, which stand as a precursor of the CLM used in this work. This chapter is based on the concept of
stochastic quantization as pioneered by Parisi, Wu and Klauder [32, 33, 34].

Part II focuses on the physics problem addressed in this work and solutions, as well as a preview of the related background
behind it.

chapter 5 is a brief revision of core elements of (classical) field theory, provided here for notational conventions mostly.
Readers familiar with quantum field theory may skip this chapter.

chapter 6 contains elements of string theory somewhat relevant to the origin of the IKKT model as well as the
dynamical compactification of extra dimensions. Readers familiar with string theory will find here how the IKKT
model connects to type IIB superstring theory, as well as what issues are addressed by matrix models (dynamical
compactification of extra dimensions) and what issues are not (for example the moduli space of string theories).

chapter 7 contains a thorough presentation of the CLM applied in the context of the IKKT model, together with
technical aspects that arise when working with field theories (for example exploiting gauge symmetries of fields).
This chapter previews the backbone of the methodology used in the research of this doctorate study.

chapter 8 contains the results of the study of the Euclidean IKKT model using the CLM. For completion, the results
of the 4–dimensional toy model are included together with the 6–dimensional toy model and the 10–dimensional
true model, which are part of this dissertation.

chapter 9 contains the results of the study of the Lorentzian IKKT model using the CLM, with various modifications
to the model in exploring the dynamical generation of a Lorentzian spacetime.

Supplementary material for other type IIB superstring theory matrix models can be found in [51, 52, 53, 54, 55, 56]. Further
details about the history and evolution of the IKKT matrix model can be found in [4, 57, 58, 59, 60, 61, 62, 63].

A compulsory greek synopsis of the thesis is appended at the end.
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Part I.

Background
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1. Mathematical foundation

1.1. Algebra

Foundations

Relations

Definition 1.1.1. A binary relation ∼ on a set R for which:

• ∀a ∈ R, a ∼ a (reflexivity),

• ∀a, b ∈ R, a ∼ b if and only if b ∼ a (symmetry),

• ∀a, b, c ∈ R with a ∼ b and b ∼ c, a ∼ c (transitivity),

is an equivalence relation on R.

An equivalence relation ∼ partitions R into disjoint sets or equivalence classes, defined (and denoted) by

R

∼
= {b ∈ R|b ∼ a}.

Indeed, suppose that ∃c with c ∈ [a] and c ∈ [b] and [a] ̸= [b]. Then, c ∼ a and c ∼ b, hence by symmetry and transitivity
a ∼ b, hence a ∈ [b] and b ∈ [a], and since the same holds for all of [a] and all [b], [a] = [b].

Definition 1.1.2. A binary relation ≤ on a set R for which:

• ∀a ∈ R, a ≤ a (reflexivity),

• ∀a, b, c ∈ R with a ≤ b and b ≤ c, a ≤ c (transitivity),

• ∀a, b ∈ R with a ≤ b and b ≤ a, a = b (antisymmetry),

• ∀a, b ∈ R, a ≤ b or b ≤ a (strong connectivity),

is a total ordering on R.

R with a total ordering ≤ (implicitly) has a strict total ordering < too:

• ∀a ∈ R, a ≮ a (non–reflexivity),

• ∀a, b, c ∈ R, with a < b or b < c, a < c (transitivity),

• ∀a, b ∈ R with a ̸= b, a < b or b < a (strong connectivity),

which is implied by ≤ with the definition:

• ∀a, b ∈ R with b ≰ a, a < b.

If ∃x ∈ R such that ∀a ∈ R, a ≥ x/a ≤ x, R is bounded from below/above with respect to the total ordering ≤. The same
definition applies with respect to the strict total ordering <. A strict total ordering bound is a total ordering bound and it
is unique.
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1. Mathematical foundation

Sets with operation(s)

Definition 1.1.3. A magma is a set G closed under a binary operation ◦ : G×G −→ G.

A monoid is a magma (G, ◦) whose binary operation ◦ satisfies:

• ∀a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity),

• ∃1 ∈ G unique, such that ∀a ∈ V , 1 ◦ a = a ◦ 1 = a (identity),

(G, ◦) is a group is on top

• ∀a ∈ G, ∃x ∈ G unique, such that a ◦ x = x ◦ a = 1 (divisibility).

(G, ◦) is an Abelian group if on top

• ∀a, b ∈ G, a ◦ b = b ◦ a (commutativity),

Definition 1.1.4. A field is a set K closed under two binary operations +, · : K×K −→ K such that:

• K is an Abelian group with operator +, identity 0 and, x = −a inverse ∀a ∈ K,

• (K \ {0}, ·) is an Abelian group with identity 1 and x = a−1 inverse ∀a ∈ K,

• ∀a, b, c ∈ K, a(b+ c) = ab+ ac or (a+ b)c = ac+ bc (distributivity).

Excluding 0 from multiplication implies it should either be undefined, or ∀a ∈ F , a0 = 0a = 0 (destructibility), which in turn
implies that ∀a, b ∈ F with ab = 0, a = 0 or b = 0.

Definition 1.1.5. A vector space over a field K is a set V closed under addition + : V × V −→ V and scalar multiplication
· : K× V −→ V , such that:

• V is an Abelian group with operator +, identity 0V and inverse −x, ∀x ∈ V ,

• All group properties of field multiplication in K except for divisibility hold for the scalar multiplication:

◦ ∀a, b ∈ K and ∀x ∈ V , a(bx) = (ab)x (scalar associativity),

◦ ∀x ∈ V , 1x = x (scalar identity),

◦ ∀a ∈ K and ∀x, y ∈ V , a(x+ y) = ax+ ay (vector distributivity),

◦ ∀a, b ∈ K and ∀x ∈ V , (a+ b)x = ax+ bx (scalar distributivity).

also implying:

◦ ∀a ∈ K and ∀x ∈ V with ax = 0V , a = 0 or x = 0V .

Thus a field F is its own vector space by definition 1.1.5.

A linear subspace U ≤ V is a subset of V (finitely)1 closed under the operations of vector space V . ∀A ⊆ V , spanA is the
smallest subspace U ≤ V with A ⊆ V . dimV ≤ |A| with equality (and thus definition) holding if A is a (not unique) smallest
subset for which spanA = V . These concepts change when relaxing the finiteness constraint.

Definition 1.1.6. An algebra over a field K is a vector spaceK, additionally closed under binary multiplication ◦ : K×K −→ K
(magma), such that

• ∀x, y, z ∈ K, x ◦ (y + z) = x ◦ y + x ◦ z and (x+ y) ◦ z = x ◦ z + y ◦ z (left and right distributivity),2

• ∀a, b ∈ K and ∀x, y ∈ K, (ax) ◦ (by) = ab(x ◦ y) (product compatibility).

Additionally,
1An alternative definition of spanA is all the (finite) linear combinations of elements in A. This may be different to all the linear combinations

of elements in A, if A is infinite.
2Notice how “and” is used instead of “or”, because unlike in a field, an algebra is generally (and usually) non–commutative.
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1.1. Algebra

• If K is a monoid with ◦, K is a unital algebra,

• If ◦ is associative, K is an associative algebra,

• If ◦ is commutative, K is a commutative algebra,

• If ◦ is anti–commutative, i.e. ∀x, y ∈ K, x ◦ y + y ◦ x = 0, K is a Grassman algebra.

If K is a group with ◦, ◦ = · and K simply reduces to a field. Thus a field F is its own (associative, unital, commutative)
algebra.

Definition 1.1.7. A Grassman number over a field K is defined ∀a, b ∈ K, as a+ bℓ with ℓ2 = 0. Grassman numbers form
a Grassman algebra U over K with the algebra operations defined by:

• ∀ϕ = ϕ0 + ϕ1ℓ, ψ = ψ0 + ψ1ℓ ∈ U , and ∀a, b ∈ K, aϕ+ bψ = a(ϕ0 + ϕ1ℓ) + b(ψ0 + ψ1ℓ) = (aϕ0 + bψ0) + (aϕ1 + bψ1)ℓ,

• ∀ϕ = ϕ0 + ϕ1ℓ, ψ = ψ0 + ψ1ℓ ∈ U , ϕ ◦ ψ = (ϕ0 + ϕ1ℓ)(ψ0 + ψ1ℓ) = ϕ0ψ0 + (ϕ0ψ1 + ϕ1ψ0)ℓ.

The concept of a base generalizes to that of a generating set A ⊂ K, such that ∀x ∈ K, there exists a combination of elements
in A that generate x via any or all of the operations of the algebra K. The usual process is to span a base B out of the
generators A via ◦, then simply spanB = K. dimK = |B|, not |A|.

For non–commutative algebras K the commutator operator is defined via

[·|·] : K ×K −→ K : x, y ↦−→ [x|y] = x ◦ y − y ◦ x,

which is identically 0 for commutative algebras.

Operators

Definition 1.1.8. A linear operator F : V −→ U : x ↦−→ Fx from a vector space V to a vector space U , both over a field
K, satisfies

• ∀a, b ∈ K and ∀x, y ∈ V , F (ax+ by) = aFx+ bFy (linearity).

Example 1.1.9. The set L(V,U) of all linear operators F : V −→ U is a vector space under function addition and scalar
multiplication as

∀a, b ∈ K, ∀x, y ∈ V and ∀F ∈ L(V,U), F (ax+ by) = F (ax+ by) = aFx+ bFy.

Moreover, L(V, V ) = L(V ) ≃ MdimV K is an (associative unital) algebra under function composition as,

∀x ∈ V and ∀F,G ∈ MdimV K, (F ◦G)x = F (Gx) = FGx,

where MdimV K is the space of all dimV × dimV (square) matrices representing linear operators in L(V ).

Definition 1.1.10. An operator F : V −→ U :

• such that F (V ) ≤ U , is a homomorphism,

• such that F (V ) = U , f is an epimorphism,

• such that F is injective, F is a monomorphism and V ≲ U ,

• F is both a monomorphism and epimorphism (implying it is bijective), F is an isomorphism and V ≃ U .

11



1. Mathematical foundation

Tensors

∀V,U vector subspaces with V ∩ U = ∅, their Cartesian product V × U is identified as their direct sum V ⊕ U , while

V ⊗ U = {x⊗ y ∈ L(U, V )|∀x ∈ U and ∀y ∈ V },

with x⊗ y : V −→ U : a ↦−→ x(y · a).3

Definition 1.1.11. ∀V a finite collection of vector spaces,

T =
⨂︂
V =

⨂︂
V ∈V

V

is a tensor space of rankT = |V|. ∀x ∈ T , x is a tensor.

∀U, V algebraic structures of the same type (groups, fields, vectors spaces, algebras etc) such that U ⊆ V , U is a subconstruct
(of the corresponding type) of V , denoted as U ≤ V .

Definition 1.1.12. ∀V a vector space over a field K, and ∀n ∈ N,

TnV =
⨂︂n

i=1
V

is the rank n tensor space generated by V .

The direct sum
TV =

⨁︂
n∈N

TnV =
⨁︂

n∈N

⨂︂n

i=1
V

together with the product, such that ∀x = (xn)n∈N, y = (yn)n∈N ∈ TV ,4

xy = (xn ⊗ yn)n∈N,

forms the so called free (graded) tensor algebra generated by V [64].

Linear equations

Equality = in vector spaces and their respective operator algebra can be used to pose questions in the form of (linear)
equations.

Definition 1.1.13. ∀F : V −→ U linear operator between vector spaces V and U , and ∀y ∈ F (V ) ≤ U , ∃A ⊆ V such that
∀x ∈ A,5 Fx = y.

For the homogeneous case Fx = 0,6 the solution A = kerF ≤ V is a subspace of V and called the kernel of F . ∀x0 solution
of Fx = y, A = {x+ x0|∀x ∈ kerF}.

The following are equivalent ∀F : V −→ U :

• Fx = y has an exact solution {x0},

• kerF = {0V } or dimkerF = 0,

• ∃!F−1 : F (V ) −→ U and thus detF ̸= 0, and x = F−1y.7

3See definition 1.2.6 for the definition of an inner product on a vector space in general and definition 1.1.16 specifically for the standard inner
product in vector spaces, used here.

4∀n,m ∈ N, TnV ⊗ TmV ≃ Tn+mV .
5Note that y ∈ F (V ), and not y ∈ U generally, is essential for the existence of a solution A ⊆ V .
6Note that ∀B ≤ U , 0 ∈ B, as a vector (sub)space.
7F : V −→ U injective means its representations are square matrices. This also implies that V ≲ U .
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1.1. Algebra

Eigenvalues

Definition 1.1.14. ∀F : V −→ V operator on a vector space V on a field K, ∀x ∈ V and ∀λ ∈ K such that,

Fx = λx,

x is an eigenvector of F and λ an eigenvalue of F .

F − λ1 being singular (dimkerF > 0) is the definitional requirement for non–zero eigenvectors. Since eigenvectors are
non–zero solutions to the homogeneous equation (F −λ1)x = 0, they form a whole subspace ker(F −λ1) ≤ V corresponding
to the eigenvalue λ.

The direct sum of all eigenvector subspaces forms the original vector space V ,

V =
⨁︂

λ eigenvalue of F
ker(F − λ1),

therefore F can have at most dimV eigenvalues if dimV <∞.

Representations

Definition 1.1.15. ∀V vector space, a smallest subset A ⊂ V for which spanA = V , if it exists,8 is a base of V .

If |A| <∞, dimV = |A| and A = {an}dimV
n=1 ∀x ∈ V ,

x =
∑︂dimX

n=1
xnan.

Similarly, for A = {an}n∈N countable and V complete,

x =
∑︂

n∈N
xnan,

where (xn)
dimV
n=1 ∈ RdimV . Both cases can be expressed with the generic form

x =
∑︂

a∈A
xaa. (1.1.1)

Definition 1.1.16. ∀V finite dimensional vector space, xa stands for the base–invariant vector x ∈ V . In the same convention,
pair of repeating indices imply summation, for example, ∀x, y ∈ V ,

x · y = xaya.

Fab stands for the base–invariant F ∈MdimV K operator on V . If F is hermitian for example,

x · F · y = xaFabyb.

If a new inner product is defined via a hermitian (and positive definite for Euclidean spaces) operator g ∈MdimV K,

x ·g y = xagabyb.

It also applies on vector level
Fx|a = Fabxb,

which is the familiar matrix product stemming from operator action. In this case, the free index a is mandatory and denotes
that this is a vector relation. In this notation, a symbol without indices is a scalar. Repeating indices are not free (as they
are summed over).

Operator composition is represented by a matrix product, ∀F,G : V −→ V ,

F ◦G|ab = FacGcb

8The most common use cases are finite–dimensional vector spaces V , for which dimV = |A|, and complete infinite–dimensional (see section §1.2.
Analysis) vector spaces.
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1. Mathematical foundation

Example 1.1.17. The identity operator 1 : V −→ V has Kronecker’s delta as an index form, ∀x ∈ V ,9

1x = x or 1x|a = δabxb = xa.

Another example is the antisymmetric tensor ε with rank ε ∈ N such that

εx1...xrank ε
=

⎧⎪⎨⎪⎩
+1 x1 . . . xrank ε is an even permutation of Nrank ε

−1 x1 . . . xrank ε is an odd permutation of Nrank ε

0 otherwise
,

the simplest non–trivial case being rank ε = 2 with ε01 = +1, ε10 = −1 and ε00 = ε11 = 0.

∀F : V −→ V linear operator, detF = εx1...xdimV
Fx1...xdimV

.

Index squashing

∀T tensor with rankT ∈ N, its symmetrized version is written as

T(x1...xrankT ) =
1

(rankT )!

∑︂
(σ:NrankT−→NrankT )∈SrankT

T(xσ(1)...xσ(rankT )),

and its antisymmetrized version as

T[x1...xrankT ] =
1

(rankT )!

∑︂
(σ:NrankT−→NrankT )∈SrankT

ϵσ(1)...σ(rank)T(xσ(1)...xσ(rankT )),

where ∀n ∈ N, Sn is the group of all permutations of n numbers.

For rankT = 2,

T(xy) =
1

2
(Txy + Tyx) and T[xy] =

1

2
(Txy − Tyx).

1.2. Analysis

Topology

Definition 1.2.1. A collection of subsets T on a set V such that:

• ∅ ∈ T and V ∈ T ,

• ∀A ⊆ T subcollection of T , ⋃︂
A =

⋃︂
A∈A

A ∈ T ,

• ∀A ⊆ T finite subcollection of T , ⋂︂
A =

⋂︂
A∈A

A ∈ T .

is a topology (of open subsets) on V . A set V equipped with a topology T is a topological space (V, T ).

∀U ⊆ V , TU = {A ∩ U |A ∈ T } is the induced on U topology of V .10

9Kronecker’s δ is the discrete version of Dirac’s δ distribution and outright definable as

δxy =

{︄
1 x = y

0 x ̸= y
.

10U ∈ T is not necessary for U ∈ TU ; by definition V ∈ T therefore V ∩ U = U ∈ TU . Obviously ∅ ∩ U = ∅ ∈ TU . Union and finite intersection
are straightforward to show too.
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1.2. Analysis

Definition 1.2.2. A function f : V −→ U between two topological spaces V and U with topologies TV and TU respectively
such that ∀A ∈ TU , f−1(A) ∈ TV . A function f : V −→ U that is bijective, continuous with inverse f−1 : U −→ V continuous
as well, is a homeomorphism between V and U , and in such a case V and U are homeomorphic, writing V ≃ U .

As in an abstract set, a vector space V may assume a topology T . Topologies on sets can be defined via mappings on its
elements, the most common being a metric d on V .

Definition 1.2.3. A limit point x ∈ U of a subset U ⊆ V of a topological space V with topology T is such that ∀U ∈ T
with x ∈ U , U \ {x} ≠ ∅. The set U of all limit points of U is called the closure of U .

Obviously, V ⊇ V . If V = V , then V is complete.

Metric

Definition 1.2.4. A metric d : V × V −→ R on a set V satisfies:

• ∀x, y ∈ V , d(x, y) = 0 if and only if x = y (identity of indiscernibles),

• ∀x, y ∈ V , d(x, y) = d(y, x) (symmetry),

• ∀x, y, z ∈ V , d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality),

Non–negativity is implied:

• ∀x, y ∈ V , 2d(x, y) = d(x, y) + d(x, y) = d(x, y) + d(y, x) ≥ d(x, x) = 0.

A metric on V implies a topology T on V by taking unions of ϵ–balls on V defined as {y ∈ V : d(x, y) < ϵ}, ∀x ∈ V .

Norm

Definition 1.2.5. A seminorm ∥ · ∥ : V −→ R on a vector space V over a field K satisfies:

• ∀x, y ∈ V , ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (subadditivity),

• ∀a ∈ K and ∀x ∈ V , ∥ax∥ = |a|∥x∥ (absolute homogeneity),

A norm is a seminorm that additionally:

• ∀x ∈ V , if ∥x∥ = 0 then x = 0V (positive definiteness) which implies ∥0V ∥ = ∥0x∥ = |0|∥x∥ = 0∥x∥ = 0.

Non–negativity is implied:

• ∀x ∈ V , 2∥x∥ = ∥x∥+ ∥x∥ ≥ ∥x− x∥ = ∥0V ∥ = 0.

A norm on V implies a metric on V by d(x, y) = ∥y − x∥, ∀x, y ∈ V . A complete normed space V is a Banach space.

Inner product

Definition 1.2.6. An inner product ⟨·|·⟩ : V ×V −→ K on a vector space V over a field K equipped with the extra (conjugate)
involution ·∗ : V ↦−→ V , such that,

• K is an extension of R and particularly, ∀a ∈ K hermitian, i.e. with a = a∗, a ∈ R,

• ∀a ∈ K, a∗∗ = a,

• ∀a, b ∈ K, (ab)∗ = b∗a∗,

satisfies

• ∀x, y ∈ V , ⟨x|y⟩ = ⟨y|x⟩∗ (conjugate symmetry) which implies ⟨x|x⟩ = ⟨x|x⟩∗ ∈ R, ∀x ∈ V ,
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1. Mathematical foundation

• ∀a, b ∈ K and ∀x, y, z ∈ V (linearity),

⟨ax+ by|z⟩ = a⟨x|z⟩+ b⟨y|z⟩, or

⟨x|ay + bz⟩ = a⟨x|y⟩+ b⟨x|z⟩.

• ∀x ∈ V , if x ̸= 0V then ⟨x|x⟩ > 0 (positive definiteness).

An inner product on V implies a norm on V by ∥x∥ =
√︁
⟨x|x⟩. A complete space with an inner product is called a Hilbert

space.

If the inner product is real specifically, i.e. ⟨·|·⟩ : V × V −→ R, the conjugate symmetry reduces to symmetry,

• ∀x, y ∈ V, ⟨x|y⟩ = ⟨y|x⟩ (symmetry).

∀x, y ∈ V \ {0V } with ⟨x|y⟩ = 0, x and y are orthogonal. If on top ∥x∥ = ∥y∥ = 1, they are orthonormal.

By definition, a finite–dimensional vector space V allows at most dimV number of orthogonal vectors, as orthogonality
implies linear independence.

Duality

Operators

Definition 1.2.7. ∀V,U normed vector spaces over a field K, a linear operator F : V −→ U is:

• bounded if ∃c ∈ R such that, ∀x ∈ V , ∥Fx∥U ≤ c∥x∥V ,

◦ an isometry (specifically) if ∀x ∈ V , ∥Fx∥U = ∥x∥V ,

• a functional if U = K.

The set L(V,U) of all bounded linear operators F : V −→ U is a vector space, with dimL(V,U) = dimV dimU .

For bounded linear operators F : V −→ V on the same vector space V , the shorthand notation L(V ) is used. L(V ) still is
an algebra.

The set V ∗ of bounded linear functionals on V is the topological dual set of V . The duality defines a natural pairing map
⟨·|·⟩V : V × V ∗ −→ R such that ∀x ∈ V and ∀f ∈ V ∗, ⟨x|f⟩V = f(x). If V is a real Hilbert space, it is self–dual in the sense
that the natural pairing and its inner product coincide (isomorphically).

Definition 1.2.8. ∀F : V −→ U operator from V to U Hilbert spaces, for the adjoint operator F † : U −→ V , ∀x, y ∈ V ,

⟨x|F †y⟩U = ⟨Fx|y⟩V .

The definition of the dual natural pairing map provides a natural (bra–ket) notation (due to Dirac) for (dual or otherwise)
vectors x in a vectors space V . In the context of dual spaces, ⟨f | ∈ V ∗ and |x⟩ ∈ V . An operator F : V −→ U operates on
the left on vectors as F |x⟩ = Fx and on the right for dual vectors respectively.

In the context of a complex inner product, an operator F : V −→ V on a Hilbert space V is hermitian if and only if F † = F ,
or equivalently ∀x ∈ V and ∀y ∈ U ,

⟨Fx|y⟩ = ⟨x|Fy⟩ = ⟨x|F |y⟩,

which basically allows the last notation.11 The same is true for a real inner product, provided F is symmetric.

∀λ eigenvalue of a hermitian operator F , λ ∈ R, and if on top F is positive–definite, λ > 0.

Finally, the inner product defines a natural projection functional on a Hilbert space V , ∀x ∈ V , as ⟨x| : V −→ K.
11Note that in the hermitian notation ⟨x|F |y⟩, there is only one inner product, the one on U .
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1.2. Analysis

Definition 1.2.9. A hermitian operator F : V −→ V on a vector space V such that ∀x ∈ V , ⟨x|F |y⟩ > 0, is positive–definite.

∀λ eigenvalue of a positive–definite operator F , λ > 0.

Proposition 1.2.10. ∀F : V −→ V positive definite operator on a vector space V ,

⟨x|F |y⟩ = ⟨x|y⟩F

defines an inner product on V per definition 1.2.6.

Definition 1.2.11. ∀V complete vector space,12 and base A,

|x⟩ =
∑︂

a∈A
|a⟩⟨a|x⟩, (1.2.1)

where the operator ∑︂
a∈A
|a⟩⟨a| : X −→ X, (1.2.2)

is a projection operator.

The projection operator (1.2.2) does nothing, as is understood by (1.2.1), allowing it to be interjected wherever in operations
on V . However, if A is not a base of V , in the sense that spanA < V , the operator does act as a projector on x ∈ V to
spanA, hence the name. ∀a ∈ A, ⟨a|x⟩ ∈ K is the component a (projection) of x, and (1.2.1) is identical to (1.1.1).

Definition 1.2.12. By extension, an operator F : V −→ U from V to U vector spaces assumes a matrix representation
given a base A on V ,

F =
∑︂

a∈A

∑︂
b∈A
|a⟩⟨a|F |b⟩⟨b|,

whose components are ⟨a|F |b⟩, ∀a, b ∈ A.

Combining vector representations 1.1.15 and matrix representations 1.2.11, an expression (calculation) is possible at compo-
nent level, ∀x, y ∈ V and ∀F ∈ L(V ),

⟨x|F |y⟩ =
∑︂

a∈A

∑︂
b∈A
⟨x|a⟩⟨a|F |b⟩⟨b|y⟩,

simply by injecting projection operators.

At component level, the following shorthand notations will be used throughout:

• ∀x, y ∈ V vectors, the inner product can be written as

x · y = x†y = ⟨x|y⟩ = xaya ∈ K.

where the matrix column–row notation is used for reference. ∀F,G ∈ L(V ) component matrices, this notation relates
to the ordinary matrix product as

F ·G = F †G ∈ L(V ) or F ·G|ab = F ∗
caGcb.

• ∀x, y ∈ V vectors, the outer product

x⊗ y = xy† ∈ L(V ) or x⊗ y|ab = xayb.

where the matrix column–row notation is used for reference. ∀F,G ∈ L(V ) component matrices, this notation relates
to the ordinary matrix product as

F ⊗G = FG† ∈ L(V ) or F ⊗G|ab = FacG
∗
bc.

12A in definition 1.1.15 is at most countable.
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1. Mathematical foundation

The inner (dot) product notation will be used as an alternative often to avoid confusion with the inner product induced by
a measure on measure spaces.13 For K = R, † = ⊤, i.e. the notion of the adjoint becomes that of the transpose. Extended
matrix operations in definition 1.2.8 reduce to the ordinary matrix product for hermitian operators. Finally, for a hermitian
operator F : V −→ U and ∀x, y ∈ V , the following symmetric notation makes sense,

x · F · y = ⟨x|F |y⟩ = xaFabyb ∈ K.

Infinite–dimension spaces require extra structure to that of a topology, namely a measure and a collection of measurable
subsets to define a metric/norm/product, and their completeness as spaces is at risk, even if K is complete.14

Definition 1.2.13. The suprenum supA of a subset A ⊆ V of a set V equipped with a topology T and a total ordering ≤
is the lowest upper bound by said ordering of A. For a functional f : V −→ K, sup f = sup f(V ).

Spectrum

Definition 1.2.14. ∀λ ∈ K such that for a bounded linear operator F : V −→ V of a vector space V over a field K, operator
F − λ1 : V −→ V is non–bijective.

Of note is that the spectrum of an (bounded) operator is more than its eigenvalues (definition 1.1.14).

The natural numbers N

Definition 1.2.15. By the axiom of infinity,15 ∃N collection of (inductive) sets such that, ∀N ∈ N:

• 0 = ∅ = {} ∈ N (empty set),

• ∀a ∈ N , next(a) = a ∪ {a} ∈ N (successor),

The intersection (which is straightforwardly also an inductive set),

N =
⋂︂

N =
⋂︂

N∈N
N

is the set of natural numbers.

Informally, the axioms in definition 1.2.15 effectively describes a counting process, which is the essence of natural numbers,

N = {{}, {{}}, {{{}}}, {{{{}}}}, . . .} = {0, 1, 2, 3, . . .},

and the process is countably infinite.

The successor function defines an addition operation on N such that

∀a ∈ N, a+ 0 = a and ∀b ∈ N, a+ next(b) = next(a+ b),

which associative and symmetric, and with neutral element 0, making N a monoid.

The natural numbers are well–ordered by the total ordering ≤ such that

∀a, b, a ≤ b if and only if ∃c ∈ N such that a+ c = b.

It is unusual to assume a topology on the natural numbers, so it is customary to just assume the power set 2N (maximum
topology) if necessary.

13See section §2.1. Probability theory for details.
14See section §2.1. Probability theory for more details on σ–algebras and measures.
15∃A set with ∅ ∈ A such that ∀a ∈ A, a∪ {a} ∈ A. Such sets are called inductive, and the axiom allows the existence of (countably) infinity sets.
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1.2. Analysis

Finite counting with Nn, ∀n ∈ N∗

Nn ⊂ N is simply {1, 2, 3 . . . , n}, ∀n ∈ N∗, and is frequently used to enumerate finite ordered sets (vectors) and or indices.

The integers Z

Definition 1.2.16. The equivalence relation ∼+ in N× N such that,

∀(a, b), (c, d) ∈ N× N, (a, b) ∼+ (c, d) if and only if a+ d = b+ c,

defines the set of integers as

Z =
N× N
∼+

.

Informally, Z = {. . . ,−3,−2,−1, 0,+1,+2,+3, . . .} ⊃ N.

Z is a group under the addition operator defined as,

∀[(a, b)], [(c, d)] ∈ Z, [(a, b)] + [(c, d)] = [(a+ c, b+ d)],

with neutral element [(0, 0)] and opposite −[(a, b)] = [(b, a)], ∀[(a, b)] ∈ Z.

Z is a monoid under the multiplication operator defined as,

∀[(a, b)], [(c, d)] ∈ Z, [(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)],

with neutral element [(1, 0)].

Integers are well–ordered by the total ordering ≤ such that

∀[(a, b)], [(c, d)] ∈ Z, [(a, b)] ≤ [(c, d)] if and only if a+ d ≤ b+ c.

Z can be seen as the minimum group closure of the natural numbers under addition. The ordered pair (a, b) stands for the
difference a− b and an equivalence class consists of all such pairs of natural numbers giving the same difference.

The positive integers Z+ = N∗

Of interest are the positive integers

Z+ = {1, 2, 3, . . .} = N \ {0} = N∗,

for they make a good case of a magma with respect to multiplication, as they do not include the destructive (for multiplication)
0. Such positive subsets will become more relevant in the grater number sets that follow.

Integers naturally define the operation of absolute value as,

∀a ∈ Z, |a| =

{︄
+a a ≥ 0

−a a ≤ 0
,

bearing in mind that +0 = −0 are the neutral element of addition.
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1. Mathematical foundation

The cyclic groups Zn, ∀n ∈ Z+

Of greater interest are the finite mod groups defined by Euclidean division on integers.

Definition 1.2.17. ∀a, b ∈ Z, ∃q ∈ Z and ∃r + 1 ∈ Nb unique, such that a = qb+ r.

Symbolically, r = amod b.

∀n ∈ Z, the equivalence relation ∼n matching integers by their Euclidean remainder with n, partitions integers into a finite
set of equivalence classes represented by said remainder, defined as

Zn =
Z
∼n

.

Zn is a group under the addiction +n defined as

∀a, b ∈ Zn, a+n b = (a+ b)modn.

Informally, Zn = {0, 1, 2, 3, . . . , n− 1}.

The rational numbers Q

Definition 1.2.18. The equivalence relation ∼· in Z× Z∗ such that,

∀(a, b), (c, d) ∈ Z× Z, (a, b) ∼· (c, d) if and only if ad = bc,

defines the set of rational numbers as
Q =

Z× Z∗

∼·
,

where Z∗ = Z \ {0}.

Rational numbers maintain their integer ordered pair notation in the form of a fraction a/b, ∀[(a, b)] ∈ Q. The corresponding
equivalence class stands for all equivalent fractions.

Informally, Q ⊃ Z.

Q is a group under the addition operator defined as,

∀a
b
,
c

d
∈ Q,

a

b
+
c

d
=
a · d+ b · c

b · d
,

with neutral element 0/1 and opposite −a/b = (−a)/b, ∀a/b ∈ Q, where the corresponding equivalence classes are implied.

The positive rational numbers Q+

Of interest are the positive rational numbers,

Q+ =
Z+ × Z+

∼·
,

which form a group under the multiplication defined as,

∀a
b
,
c

d
∈ Q,

a

b
· c
d
=
a · c
b · d

,

with neutral element 1/1 and inverse (a/b)−1 = b/a, ∀a/b ∈ Q.

The multiplication (and corresponding group structure) of Q+ extends to Q, and together with the addition operator, Q is
a field (definition 1.1.4).
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1.2. Analysis

Q still is well–ordered by the total ordering ≤ such that

∀a
b
,
c

d
∈ Q,

a

b
≤ c

d
if and only if ad ≤ bc.

Absolute value extends to rational numbers as
∀a
b
∈ Q,

⃓⃓⃓⃓
a

b

⃓⃓⃓⃓
=
|a|
|b|
.

Q can be seen as the minimum field closure of the integers group under multiplication.

The real numbers R

∀{an}n∈N ⊆ Q Cauchy sequence of rational numbers, the existence of a limit a ∈ Q is not guaranteed. Informally the set of
all limit points of Q (the completion of Q) is the set of real numbers R.

Definition 1.2.19. The set of real numbers is a totally–ordered field, having the least–upper–bound property,

∀A ⊆ R, ∃ supA ∈ R such that ∀a ∈ A, a ≤ supA and ∀b ∈ R with a < b, supA < b.

The real numbers is the first set to assume a non–trivial topology T , generated by all the open intervals in R. This topology
is also generated by the metric defined ∀a, b ∈ R by d(a, b) = |a− b|.16

Informally, R = Q ⊃ Q.

The positive real numbers R+

The positive real numbers R+ is of equivalent interest to that of the positive rational numbers Q+, as a clean group under
multiplication with 1 and no destructive element. It is interesting to point out that the functions mapping one set to the
other are none other than

log : R+ −→ R and exp : R −→ R+,

with the corresponding properties of translating one operation into the other,

∀a, b ∈ R+, log(ab) = log a+ log b, and ∀a, b ∈ R, exp(a+ b) = exp a exp b.

The probability interval [0, 1]

The probability interval [0,1] follows a similar pattern, this time with the pair of the logistic function and its inverse sigmoid
function:

logit : [0, 1] −→ R : x ↦−→ logitx = log
x

1− x
and σ : R −→ [0, 1] : x ↦−→ σ(x) =

1

1 + exp(−x)
,

with the corresponding operator in [0,1] now respecting,17

∀a, b ∈ R, σ(a+b) =
1

1 + exp(−(a+ b))
=

1

1 + exp(−a) exp(−b)
=

1

1 +
σ(−a)
σ(+a)

σ(−b)
σ(+b)

=
σ(a)σ(b)

σ(a)σ(b) + σ(−a) + σ(−b)
= σ(a)◦σ(b),

so that ∀a, b ∈ [0, 1], logit(a ◦ b) = logit a+ logit b.
16Coincidentally this metric also stands for the Lebesgue measure on the Borel σ–algebra B(R) = σ(T ) stemming from the topology T of R (see

section §2.1. Probability theory for details).
17Note that σ(−x) = 1− σ(x) and

exp(−x) =
σ(−x)

σ(+x)
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1. Mathematical foundation

The complex numbers C

Definition 1.2.20. The set of complex numbers C is (isomorphic to) R2 equipped with the corresponding addition and a
product stemming from the polynomial notation of complex numbers via an indeterminate ı (imaginary unit),

∀(x0, x1) ∈ R2, x0 + ıx1 ∈ C,

with the condition ı2 + 1 = 0, making it a field.

The condition ı2 = −1 implies ∀n ∈ Z,

ı4n+0 = +1, ı4n+1 = +ı, ı4n+2 = −1, ı4n+3 = −ı,

which means that the group generated by ı via polynomial multiplication is isomorphic to Z4, and the cyclicity allows
the reduction of all polynomials on ı back to a linear polynomial of the form x + ıy, making C closed under polynomial
multiplication.

Definition 1.2.21. ∀z = ℜz + ıℑz ∈ C,

• z∗ = ℜz − ıℑz is the conjugate of z (apparently z∗∗ = z),

• ℜz = (z + z∗)/2 is the real part of z,

• ℑz = (z − z∗)/2ı is the imaginary part of z,

• |z| =
√
z∗z =

√︁
(ℜz)2 + (ℑz)2 is the modulus or absolute value of z.

C is a field under polynomial addition and multiplication, more specifically:

• ∀z, z′ ∈ C, z + z′ = (ℜz + ℜz′) + ı(ℑz + ℑz′) (addition),

• ∀z, z′ ∈ C, zz′ = (ℜzℑz −ℜz′ℑz′) + ı(ℜz′ℑz + ℜzℑz′) (addition).

It should be noted that functions on R need care when extending to C.

Polar representation and the U(1) group

The exponential function on exp is defined as

exp : C −→ C : z ↦−→ exp z = (cosℑz + ı sinℑz) expℜz,

which implies that exp is periodic in the imaginary direction.

Definition 1.2.22. A complex number z ∈ C assumes an alternative (polar) representation by their modulus and their
so–called (imaginary) phase:

z = ℜz + ıℑz = |z| exp ı arg z,

where

|z| =
√︁
(ℜz)2 + (ℑz)2 and arg z = arctan

ℑz
ℜz

,

with the usual singularity at z = 0, where |z| = 0 and any phase applies.
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1.3. Differential Algebra

The quaternions H

A possible (and common to all further extension possibilities) extension of complex numbers with a richer imaginary unit
algebra is the set of quaternions H.

Definition 1.2.23. The set of quaternions H is (isomorphic to) R4 equipped with the corresponding addition and a product
stemming from the polynomial notation of complex numbers via an indeterminate ı (imaginary unit),

∀(x0, x1, x2, x3) ∈ R4, x0 + ıx1 + ȷx2 + kx3 ∈ C,

with the imaginary product algebra
+1 +ı +ȷ +k

+ı −1 +k −ȷ

+ȷ −k −1 +ı

+k +ȷ −ı −1

.

Unlike the complex numbers, the quaternion product is not commutative, hence H is not a field (but a ring).

Clifford Algebras CℓgV

Definition 1.2.24. ∀V a vector space over a field K and ∀g : V × V −→ K non–degenerate symmetric map such that:

• ∀y ∈ V , if g(x, y) = 0 then x = 0 (non–degenerate),

• ∀x, y ∈ V , g(x, y) = g(y, x) (symmetric),

the Clifford algebra CℓgV = TV/g with g interpreted as an equivalence relation stemming from x⊗y+y⊗x = 2g(x, y)1⊗1,
meaning the algebra product ◦ respects

x ◦ y + y ◦ x = 2g(x, y).

dimCℓgV = 2dimV [64].

∀V is equipped with an inner product (symmetric bilinear form) and

∀x, y ∈ V , g(x, y) =
1

2
(x ◦ y + y ◦ x) = 1

2
(xy + yx) = ⟨x|y⟩,

the abbreviation CℓV = CℓdimV K is used. If the inner product is not positive definite, the notation splits the positive from
the negative eigenvalues of the metric defining said inner product, like CℓV = Cℓp,qK with p+ q = dimV .

Of interest is the special case of exterior algebras Cℓ0V =
⋀︁
V defined for g = 0, resulting in an anticommutative algebra

such that,
∀x, y ∈ V , x ◦ y + y ◦ x = x ∧ y + y ∧ x = 0.

1.3. Differential Algebra

Manifolds

Definition 1.3.1. A topological space V , such that ∀x, y ∈ V with x ̸= y, ∃A,B ∈ T with x ∈ A, y ∈ B and A ∩B = ∅, is
a Hausdorff (separable) topological space.

The topology T of a topological space V admits a base B ⊆ T such that ∀U ∈ T , ∃A ⊆ B such that

U =
⋃︂
A =

⋃︂
A∈A

A
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1. Mathematical foundation

Definition 1.3.2. A topological space V that admits a countable base is a second countable (completely separable) one.

A bijective function f : V −→ U between two topological spaces U and V with topologies S and T respectively, that respects
said topologies in the sense that ∀A ∈ S, f−1(A) ∈ T , is a homeomorphism. U and V are then said to be homeomorphic.

Definition 1.3.3. A topological manifold M modeled after a vector space V on a field K, is a second countable Hausdorff
topological space with topology T that is locally homeomorphic to V with the usual topology coming from KdimV . This
means that ∀A ∈ T , ∃ϕ : A −→ V homeomorphism, called a chart.

A collection of charts enough to cover M is an atlas of M .

Definition 1.3.4. A differentiable (smooth) manifold M modeled after a vector space V on a field K is a manifold such that
∀A ⊆ T atlas of M such that ∀A,B ∈ A, ϕ−1

A ◦ ϕB : V −→ V is differentiable on V .

Lie (matrix) groups

Definition 1.3.5. A Lie group G is a group that is also a smooth manifold additionally with smooth charts.

The material presented here applies to the general theory of Lie groups/algebras, but when applied to matrices they assume
simpler and more explicit forms [65].

Let MdimV K ≃ KdimV⊗V the vector space of operators (matrices) on a vector space V over a field K, with the usual topology
TM stemming from TV which in turn stems from TK (hence the term “usual”), is a monoid under composition (matrix product)
◦, 18because it is closed and associative, and ∃1 ∈ MdimV K unit element, but ∀A ∈ MdimV K, A−1 is not necessarily defined.
MdimV K does not only assume a topology but a metric as well, stemming from a definition of a norm, usually the Frobenius
norm ∀A ∈ MdimV K, ∥A∥ =

√
AabAab.

Definition 1.3.6. The subspace GLdimV K = {A ∈ MdimV K|detA ̸= 0} ≤ MdimV K of all invertible matrices on K is a
group under composition ◦, called the (dimV –dimensional) general linear group over K. Any closed under the relative TGL
subgroup G ≤ GLdimV K is a matrix Lie group.

GLdimV K is a group, because

• ∀A,B ∈ GLdimV K, det(AB) = detAdetB ̸= 0.

• det1 ̸= 0,

• ∀A ∈ GLdimV K, A−1 ∈ GLdimV K by definition.

Most frequently used matrix Lie groups are closed under TM as well, as subsets of MdimV K.

Note that GLdimV K ∈ TM, meaning that the set of non–invertible matrices is closed [65]. However GLdimV K is trivially
closed under its own (induced) topology TGL.

Linear groups

Note that GLdimV K ∈ TM, meaning that the set of non–invertible matrices is closed [65]. However GLdimV K is trivially
closed under its own (induced) topology TGL, therefore GLdimV K, by definition 1.3.6, is a (matrix) Lie group.

Field inclusion transfers, from the defining fields to the corresponding Lie groups. For example, GLdimV R < GLdimV C for
R < C.

The special linear group SLdimV K = {A ∈ GLdimV K|detA = 1} < GLdimV K is a Lie group, as det : MdimV K −→ K is a
continuous function on TM and all induced topologies, and:

• ∀A,B ∈ SLdimV K, det(AB) = detA detB = 1.

• det1 = 1,

• ∀A ∈ SLdimV K, detA−1 = (detA)−1 = 1.
18Matrix multiplication is denoted as composition for clarity here.
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1.3. Differential Algebra

Unitary groups

∀K field with a conjugation ∗ : K −→ K (definition 1.1.4), MdimV K assumes a conjugation
† : MdimV K −→ MdimV K : A ↦−→ A† with (A†)ab = (Aba)

∗,

which is nothing more than the adjoint operator defined in 1.2.8.

The unitary group UdimV K = {A ∈ GLdimV K|A†A = AA† = 1 or A−1 = A†} < GLdimV K is a Lie group, as:

• ∀A,B ∈ SLdimV K, (AB)−1 = B−1A−1 = B†A† = (AB)†.

• 1
−1 = 1 = 1

†,

• ∀A ∈ SLdimV K, (A−1)−1 = (A†)−1 = (A−1)†.

By the definition of a unitary matrix, |detA| = 1, with the modulus function

| · | : K −→ R+ : a ↦−→ |a| =
√
a∗a

induced on K by its conjugation.19

The special unitary group SUdimV K = UdimV K ∩ SLdimV K ≤ UdimV K is a Lie group by construction.

For unitary groups with K = C, the field symbol is omitted.

Orthogonal subgroups

For K = R, the (special) orthogonal subgroup (S)OdimV < (S)UdimV defined by

(S)OdimV = {A ∈ GLdimV R|A⊤A = AA⊤ = 1 or A−1 = A⊤ (and detA = 1)}

is a Lie group, with the adjoint † replaced by the transpose ⊤.

The definition of unitary/orthogonal matrix groups is based on the definition of the adjoint/transpose of a matrix (operator),
which in turn relies on how the operators behaves in relation to the inner product of the model vector space V . According
to definition 1.2.6, an inner product shall be positive–definite, in compliance with inducing a norm on V . If that condition
is dropped, and the inner product has the general (mixed–signature) form

⟨x|y⟩ =
∑︂n

a=1
xaya −

∑︂n+k

a=n+1
xaya

a new set of (special) orthogonal groups (S)On+k is defined with n+ k = dimV .20

Isometries

An orthogonal group OdimV can be extended to a group of isometries EdimV of V ≃ RdimV as follows:

∀A ∈ OdimV and ∀x ∈ V , ∃!Ax ∈ EdimV such that ∀y ∈ V , Axy = Ay + x,

which in fact includes rotations and translations – or isometries overall – in V .

• ∀Ax, By ∈ EdimV and ∀z ∈ V , AxByz = A(Bz + y) + x = ABz +Ay + x = (AB)Ay+xz (product closure),

• ∀Ax, By, Cz ∈ EdimV and ∀w ∈ V (associativity),

(AxBy)Czw = (AB)Ay+xCzw = ((AB)C)ABz+(Ay+x) = (A(BC))A(Bz+y)+x = Ax(BC)Bz+y = Ax(ByCz)w,

• ∃10 such that 10 = 1x+ 0 = x (unit),

• ∀Ax ∈ EdimV , ∃A−1
x = (A−1)−A−1x (inverse).

It is worth noting that EdimV < GLdimV+1R specifically, with the extra degree of freedom necessary to encode translations
[65].
19For real numbers it is just ±1, while for complex numbers it is the whole unit circle.
20These are labeled with the explicit n+ k index to indicate the split of dimensions into positive–definite and negative–definite.

25



1. Mathematical foundation

The exponential map

The composition operator (matrix product) of MdimV K may not be commutative, but it is self–commutative, in the sense
that ∀A ∈ MdimV K, the exponent notation makes sense, ∀n ∈ N,

An =
∏︂n

i=1
A with A0 = 1.

For GLdimV K, n ∈ Z more so, as ∀n ∈ Z+, A−n = (A−1)n = (An)−1.

Definition 1.3.7. The exponential map is defined as

exp : MdimV K −→ GLdimV K : A ↦−→ expA =
∑︂

n∈N

1

n!
An.

Proposition 1.3.8. The exponential map is analytic on MdimV K on its topology and Frobenius distance.

Theorem 1.3.9. ∀A ∈ MdimV K, det expA = exp trA. In addition:

• exp 0 = 1,

• (expA)† = expA†,

• (expA)−1 = exp(−A),

• ∀a, b ∈ K, exp((a+ b)A) = exp(aA) exp(bA),

• ∀B ∈ MdimV K with AB = BA, exp(A+B) = expA expB,

• ∀B ∈ GLdimV K, exp(BAB−1) = B expAB−1.

Lie (matrix) algebras

Definition 1.3.10. A Lie algebra g is an algebra replacing a composition operator with that of a Lie bracket [·|·] : g×g −→ g,
that satisfies:

• ∀a, b ∈ K and ∀X,Y, Z ∈ g (bilinearity or distributivity and scalar product compatibility),

[aX + bY |Z] = a[X|Z] + b[Y |Z]

[X|aY + bZ] = a[X|Y ] + b[X|Z]
,

• ∀X ∈ g, [X|X] = 0 (alternality),

• ∀X,Y, Z ∈ g, [X|[Y |Z]] + [Y |[Z|X]] + [Z|[X|Y ]] = 0 (Jacobi identity).

By alternality, ∀X,Y ∈ g, [X + Y |X + Y ] = 0. By bilinearity, this becomes [X|Y ] + [Y |X] = 0 (anticommutativity).

All types of moprhisms in definition 1.1.10 extend to Lie groups with the added requirement that the function is continuous
with the respective domain topology.

A subalgebra h ≤ g such that ∀x ∈ g and ∀y ∈ h, [X|Y ] ∈ h, is an ideal of g. The maximal subalgebra h ≤ g such that
∀X,Y ∈ h, [X|Y ] = 0, is the center of g.

The Lie bracket [·|·] : g× g −→ g defines ∀X ∈ g an X–adjoint map

adX : g −→ g : Y ↦−→ adX Y = [X,Y ].

Definition 1.3.11. ∀{Xa}dim g
a=1 ⊂ g vector base of g, the structure constants of g with respect to said base are defined by

[Xa|Xb] = αabcXc.
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1.3. Differential Algebra

The alternality of the Lie product implies
αabc + αbac = 0,

while the Jacobi identity implies
αabcαcde + αbdcαcae + αdacαcbe = 0.

Definition 1.3.12. ∀G ≤ GLdimV K matrix Lie group, ∃g ≤ MdimV K Lie matrix algebra, such that ∀a ∈ R and ∀X ∈ g,
exp(aX) ∈ G [65].21

Definition 1.3.12 defines subdomains of the exponential map as exp : g −→ G.

∀A ∈ G, the A–adjoint map on g is
adX : g −→ g : Y ↦−→ adX Y = XYX−1.

Theorem 1.3.13. ∀G ≤ GLdimV K K–matrix Lie group, the corresponding K–matrix Lie algebra g is an R–matrix Lie
algebra too, such that ∀A ∈ G and ∀X ∈ g, for the A–adjoint of X, adAX ∈ g.

group algebra

GLdimV K gldimV K = MdimV K

SLdimV K sldimV K ≤ MdimV K such that ∀X ∈ sldimV K, trX = 0

UdimV K udimV K ≤ MdimV K such that ∀X ∈ udimV K, X +X† = 0

SUdimV K sudimV K ≤ MdimV K such that ∀X ∈ sudimV K, trX = 0 and X +X† = 0

Table 1.3.1.: Examples of Lie group/algebra correspondences.

Proposition 1.3.14. ∀X,Y ∈ MdimV K as a Lie algebra,

adexpX Y = exp adX Y.

Complexification of a real matrix Lie algebra

Definition 1.3.15. A vector space V over R is complexified by the smallest superspace U such that, ∀A,B ∈ V , A+ ıB ∈ U ,
hence U ≃ V ⊕ V .

Proposition 1.3.16. ∀g real matrix Lie algebra, ∃h vector complexification that is a complex matrix Lie algebra in the sense
of the complexified Lie bracket, ∀X,Y ∈ h,

[X,Y ] = [ℜX + ıℑX,ℜY + ıℑY ] = ([ℜX,ℜY ]− [ℑX,ℑY ]) + ı([ℜX,ℑY ] + ℑX,ℜY ]).

algebra complexified algebra

gldimV R gldimV C

sldimV R sldimV C

udimV R gldimV C

sudimV R sldimV C

Table 1.3.2.: Examples of Lie algebra complexifications.

21Note that a ∈ R suffices even if V is over K.
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1. Mathematical foundation

Physics phase convention

In the context of physics, exp ı : g −→ G : X ↦−→ exp(ıX). The result of table 1.3.1 and table 1.3.2 in this context are show
in table 1.3.3.

real complex

group algebra algebra group

GLdimV K gldimV K = MdimV K −→ gldimV K GLdimV K

SLdimV K sldimV K ≤ MdimV K such that ∀X ∈ sldimV K, trX = 0 −→ sldimV K SLdimV K

UdimV K udimV K ≤ MdimV K such that ∀X ∈ udimV K, X = X† −→ gldimV K GLdimV K

SUdimV K sudimV K ≤ MdimV K such that ∀X ∈ sudimV K, trX = 0 and X = X† −→ sldimV K SLdimV K

Table 1.3.3.: Examples of Lie group/algebra correspondences and their complexified variant.

trX = 0 stems from det expX = exp(ı trX) = 1 for the special groups.

X = X† stems from the unitary requirement of the unitary groups.

1.4. Numerical linear algebra methods

The conjugate gradient method

Equation Fx = y for finite dimension admits a linear system of equations representation Fabxb = ya. To solve an exactly–
solvable system like this (detF ̸= 0) numerically, there exist several methods, several of which are optimized for specific prob-
lems. The conjugate gradient method applies to problems where F is hermitian (F † = F ) and positive definite (detF > 0).

The term “conjugation” in this context means “orthogonality”. ∀{χn}dimV
n=1 of F–orthogonal (hence linear independent) vectors,

i.e. such that ∀n, n′ ∈ NdimV , ⟨χn′ |F |χn⟩ ∝ δnn′ , span{χn}dimV
n=1 = V .

Assume x∗ is the exact solution to the equation, i.e. Fx∗ = y or x∗ = F−1y. Expressed in the basis {χn}dimV
n=1 and ignoring

the Einstein index notation,

⟨χn′ |y⟩ = ⟨χn′ |F |x∗⟩ =
∑︂dimV

n=1
⟨χn′ |F |χn⟩⟨χn|x∗⟩ =

∑︂dimV

n=1
⟨χn|F |χn⟩δnn′⟨χn|x∗⟩ = ⟨χn′ |F |χn′⟩⟨χn′ |x∗⟩,

so the components of the solution x∗ are

⟨χn|x∗⟩ =
⟨χn|y⟩
⟨χn|F |χn⟩

. (1.4.1)

The foundation of the conjugate gradient method lies in efficiently building an orthogonal basis {x}dimV
n=1 such that, the

corresponding solution can be approximately good enough for a given tolerance. This is extremely useful for considerably
large dimV .

Note that the exact solution x∗ to Fx = y is also the (unique) minimizer of

f : V −→ R :
1

2
⟨x|F |x⟩ − ⟨x|y⟩,

whose existence is justified by its second derivative being F . The equivalent equation is then

∇f(x) = Fx− y = 0,

making the conjugate gradient method for F similar to a gradient descent method for a scalar function f , in which ∀n ∈ N
and xn ∈ V a guess of x∗, the search direction is given by the residual ϵn = −∇f(xn).
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1.4. Numerical linear algebra methods

Algorithm 1.1 Conjugate gradient method in C–like syntax

Let ϵ > 0 be a tolerance for a good approximation.
Let x0 ∈ V be an initial guess at x∗.
Let ϵ0 = y − Fx0 be the residual to the exact solution.

If ∥ϵ0∥ < ϵ:
Return x∗ = x0.

Let χ0 = ϵ0.
Let n = 0.

Repeat over n ∈ NdimV :
Let

αn =
⟨ϵn|ϵn⟩
⟨χn|F |χn⟩

.

Let xn+1 = xn + αnχn be the better guess.
Let ϵn+1 = ϵn − αnFχn be the new residual.

If ∥ϵn+1∥ < ϵ:
Return x∗ = x0.
Break from loop.

Let
βn =

⟨ϵn+1|ϵn+1⟩
⟨ϵn|ϵn⟩

.

Let χn+1 = ϵn+1 + βnχn be the next orthonormal direction.
Advance k = k + 1

Return x∗ = xk+1.

What makes the conjugate gradient method special is the requirement that the consecutive search directions are orthonormal,
therefore, assuming all previous actual search directions are orthonormal, the next one is built per the Gram–Schmidt
orthonormalization,

χn = ϵn −
∑︂n−1

i=1

⟨χi|A|ϵi⟩
⟨χi|A|χi⟩

χi.

giving the next best guess

xn+1 = xn +
⟨χn|ϵn⟩
⟨χn|A|χn⟩

χn.
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2. Stochastic processes

2.1. Probability theory

Definition 2.1.1. A collection F of events on a sample space Ω that satisfies:

• the empty set ∅ ∈ F is an event (a null event),

• ∀A ∈ F event, the complement ¬A ≡ Ω \A ∈ F is also an event,

• ∀A ⊆ F countable subcollection of events in F , the union⋃︂
A =

⋃︂
A∈A

A ∈ F ,

is also an event (logical ∨),

is an σ–algebra on Ω.

Definition 2.1.1 implies that:

• the sample space Ω = ¬∅ ∈ F is an event (the sure event)

• ∀A ⊆ F countable subcollection of events in F , the intersection⋂︂
A =

⋂︂
A∈A

A = ¬
⋃︂

A∈A
¬A ∈ F ,

is also an event (logical ∧).

This means that a σ–algebra is closed under countable set operations.

A sample space Ω that admits a σ–algebra F of events is a measurable space. Ω is implied by the cover of F ,

Ω =
⋃︂
F =

⋃︂
A∈F

A.

Theorem 2.1.2. ∀A collection of events of a set E, ∃σ(A) a smallest σ–algebra of events such that σ(A) ⊇ A.1

∀A a family of σ–algebras on a set Ω, their σ–union is⋁︂
A =

⋁︂
F∈A
F = σ

(︂⋃︂
F∈A
F
)︂
= σ

(︂⋃︂
A
)︂
.

The arbitrary intersection ⋂︂
A =

⋂︂
F∈A
F

is already a σ–algebra.

Definition 2.1.3. ∀A a family of σ–algebras, the product σ–algebra ⊗A is defined as the Cartesian product of events in
each of the σ–algebras. ⨂︂

A =
⨂︂

F∈A
F =

{︂∏︂
F∈A

AF

⃓⃓⃓
AF ∈ F ,∀F ∈ A

}︂
.

1The power set 2Ω of Ω is a σ–algebra and also, ∀A collection of events on Ω, 2Ω ⊇ A by definition, so such a σ–algebra always exists.
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2. Stochastic processes

If the sample space Ω admits a topology T , B(Ω) = σ(T ) is the Borel σ–algebra on Ω. The most prominent such example
is R with the usual topology formed from open intervals.

Definition 2.1.4. A finite positive set function ρ : F −→ [0, 1] ⊂ R on an σ–algebra of events F that satisfies:

• ρ(∅) = 0,

• ∀A ⊆ F countable disjoint2 subcollection of events in F ,

ρ
(︂⋃︂

A∈A
A
)︂
=
∑︂

A∈A
ρ(A)

is a probability measure on F .

∀A ∈ F event with ρ(A) = 0 is a null event. ∅ is a null event by definition 2.1.4.

Definition 2.1.5. ∀A a family of σ–algebras, and ∀{ρF}F∈A probability measures defined on them, the product probability
measure is defined as the product of measures on the product σ–algebra ⊗A,3⨂︂

F∈A
ρF :

⨂︂
A −→ [0, 1] :

∏︂
F∈A

AF ↦→
∏︂

F∈A
ρF (AF ).

A sample space Ω that admits a σ–algebra of events F (a measurable space), which in turn admits a probability measure ρ,
is a probability space.

A probability space is complete if and on if ∀A ∈ F null event, ∀B ⊂ A, B ∈ F , i.e. F contains all possible null events as
defined by probability ρ.

Any property with respect to the sample space Ω will be said to hold for almost all of Ω if and only if for the subset A ⊆ Ω
on which it does not hold, ρ(A) = 0. Henceforth, ∀ω ∈ Ω will mean almost everywhere. For a probability measure in specific,
this means that ρ(¬A) = 1, so “almost everywhere” coincides with “almost surely”.

Definition 2.1.6. A functionX : Ω −→ R from a measurable space Ω with σ–algebra F for which, ∀∆ ∈ B(R), X−1(∆) ∈ F ,
is a F–measurable (or just measurable when the σ–algebra is implied) function. If F additionally admits a probability measure
ρ, the measurable function X is a random variable.

Without going into much detail, a (probability) measure ρ defines a (Lebesgue) integral of a measurable function (random
variable) on an event A ∈ F , denoted as ∫︂

A

fdρ.

With this definition, for another measure µ on F with µ≪ ρ (absolutely continuous to ρ), ∃f : Ω −→ R measurable function
(Radon–Nikodym derivative) such that, ∀A ∈ F

µ(A) =

∫︂
A

fdρ.

From definition 2.1.6, X induces a probability measure (a law) ρX on B(R). ∀∆ ∈ B(R),

ρX(∆) = ρ(X−1(∆)).

Definition 2.1.7. A non–decreasing right continuous function F : R −→ R is a distribution.

2∀A,B ∈ A with A ̸= B, A ∩B = ∅.
3The product measure is a probability one because ∀A ⊆ [0, 1],∏︂

a∈A
a ∈ [0, 1].
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2.1. Probability theory

In particular, ∀X : Ω −→ R random variable, ∃FX : R −→ [0, 1] such that, ∀x ∈ R

FX(x) = ρ(X−1((−∞, x))).

The correspondence is bilateral, i.e. a distribution FX can always be associated with a probability measure ρ on R.

Random variables are in essence encoding the event information in F into quantifiable formats, avoiding the technicality of
measure spaces and the corresponding Lebesgue integrals. For example in the target space of a random variable X, together
with the distribution FX it induces on R, the Radon–Nikodym derivative simply reduces to the so called probability density
function fX : R −→ R of the random variable X, such that, ∀x ∈ R,

FX(x) =

∫︂
(−∞,x)

dFX =

∫︂ x

−∞
fX(x′)dx′,

where the latter integration is meant with the Lebesgue measure on B(R), mapping all subintervals of the form ]a, b[,4
∀a, b ∈ R, to |a− b|.

Definition 2.1.8. For a random variable X : Ω −→ R, the integral

E[X] = ⟨X⟩ =
∫︂
Ω

Xdρ,

if defined, is the expectation of X on Ω.5

By the distribution FX associated with X, its expectation is trivially

⟨X⟩ =
∫︂
R
1dρX =

∫︂
R
xdFX(x),

where 1 : R −→ R is the identity function, ∀x ∈ R, 1(x) = x.

Lemma 2.1.9 (Jensen’s inequality). ∀ϕ : R −→ R convex and measurable and ∀X : Ω −→ R an integrable random variable
on a probability space, such that ϕ ◦X : Ω −→ R is integrable,

ϕ(⟨X⟩) ≤ ⟨ϕ ◦X⟩ =
∫︂
R
ϕdρX =

∫︂
R
ϕ(x)dFX(x).

Definition 2.1.10. For a random variable X : Ω −→ R, its variance

variance(X) = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2,

is well–defined as ϕ(x) = x2 is both convex and measurable on B(R).

Similarly for an additional random variable Y : Ω −→ R, the covariance of X and Y is

covariance(X,Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩ = ⟨XY ⟩ − ⟨X⟩⟨Y ⟩.

For ⟨X⟩ to be unique, ⟨|X|⟩ <∞, where the absolute value | · | is both convex and measurable on B(R).

Example 2.1.11 (Noise). A random variable η : Ω −→ R with ⟨η⟩ = 0 and ∃σ ∈ R such that variance(η) = ⟨η2⟩ = σ2, is
also called a noise.
4All other possible endpoint combinations for the subintervals included.
5The alternate (unary) ⟨·⟩ notation of the expectation is not to be confused with the (binary) notation ⟨·|·⟩ of the inner product in Hilbert space

nor its (ternary) counterpart ⟨·| · |·⟩ involving hermitian linear bounded operators on such spaces. This notation becomes inconvenient with
conditional expectation however.
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2. Stochastic processes

Definition 2.1.12. A collection X of random variables, for which

supX∈X ⟨|X|⟩ <∞

is uniformly integrable.

Lemma 2.1.13. The law ρX of a random variable X : Ω −→ R on a probability space (Ω,F , ρ) is uniquely determined by
its characteristic function defined by

φX(α) = ⟨exp ıαX⟩.

If φX is absolutely integrable on R, the density fX correspondent to the law ρX of X is the Fourier transform of the
characteristic function,

fX(x) =

∫︂
R
exp(−ıαx)φX(α)dα.

The characteristic function of a random variable also generates its various moments, ∀n ∈ N,

⟨Xn⟩ = (−ı)n d
nφX

dαn
(0).

The central moments are respectively ⟨(X − ⟨X⟩)n⟩. The first order central moment is trivially 0. The second order central
moment is simply the variance of X,

varianceX = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2 =

(︃
dϕX
dα

(0)

)︃2

− d2ϕX
dα2

(0).

The characteristic function is what will be addressed as the partition function for an action as a random variable on field
configuration space.

Definition 2.1.14. For a probability space:

• A finite subcollection A ⊆ F of events is independent if and only if

ρ
(︂⋂︂

A∈A
A
)︂
=
∏︂

A∈A
ρ(A),

and an arbitrary subcollection A ⊆ F is independent if and only if every finite subcollection of A is independent.

• A finite family A of σ–algebras is independent if and only if every finite selection {AF ∈ F|F ∈ A} is an independent
collection of events, and an arbitrary family of A of σ– algebras is independent if and only if every finite subfamily of
A is independent.

• A finite collection of random variables X = {Xn : Ω −→ R}n is independent if and only if every selection

{Xn(A) : A ∈ A}n

of events in B(R) is independent.

Proposition 2.1.15. A finite family of random variables X = {Xn : Ω −→ R}n is independent if and only if ∀{ϕn : R −→ R}n
finite collection of measurable functions, ⟨︂∏︂

n
ϕn ◦Xn

⟩︂
=
∏︂

n
⟨ϕn ◦Xn⟩.

∀A,B ∈ F events with ρ(A) ̸= 0, the probability of B occurring given A,

ρ(B|A) = ρ(A ∩B)

ρ(A)
,

defines a conditional probability measure ρ(·|A) with ρ(A|A) = 1. If A and B are independent, ρ(B|A) = ρ(B) and
ρ(A|B) = ρ(A) mutually.
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2.1. Probability theory

By extension, a conditional on A ∈ F expectation ∀X random variable is

E[X|A] =
∫︂
Ω

Xdρ(·|A).

The σ–algebra of a probability space encodes the information said probability space has (observable) access to. Conditioning
on a particular event A ∈ F , results in a sub–σ–algebra E ≤ F ,6

E = {A ∩B|B ∈ F},

so it makes sense to generalize conditioning on a sub–σ–algebra E ≤ F .

Definition 2.1.16. ∀E ≤ F sub–σ–algebra of events in a probability space, the conditional on E expectation E[X|E ] of a
random variable X on Ω is an E–measurable and integrable random variable satisfying ∀A ∈ E ,

E[X1A] = E[E[X|E ]1A].

For another random variable Y , the conditional on Y expectation E[X|Y ] of X is simply E[X|σ(Y )].7

Theorem 2.1.17. ∀(Ω,F , ρ) probability space and ∀E ≤ F sub–σ–algebra of events, the conditional on E expectation E[X|E ]
of an (absolutely–integrable) random variable X ∈ L1(Ω,F , ρ) is almost surely (ρ–almost) unique.

For conditioning with another random variable:

Theorem 2.1.18. ∀(Ω,F , ρ) probability space, ∀(E, E , µ) measure space, ∀X : Ω −→ R ρ–integrable random variable and
Y : Ω −→ R random variable, where a measure µ is induced by Y as µ(A) = ρ(Y −1(A)), ∀∆ ∈ B(R),8 ∃ϕ : R −→ R ρ–unique
µ–integrable random variable such that ∀A ∈ E ∫︂

∆

ϕdµ =

∫︂
Y −1(∆)

Xdρ.

Therefore E[X|Y ] = ϕ ◦ Y : Ω −→ R, roughly speaking a function of Y as the expectation on X naturally eliminates any
information on X. In the usual case that Y is also a random variable (valued on R), ϕ reduces to a measurable function.

The conditional expectation inherits the properties of the Lebesgue integral (expectation) along with some extra properties.

Lemma 2.1.19 (Taking out what is known). ∀X : Ω −→ R an integrable random variable and ∀Y : Ω −→ R an E–measurable
random variable, both on a probability space with E ≤ F , such that XY is integrable,

E[XY |E ] = Y E[X|E ].

Jensen’s inequality (lemma 2.1.9) holds conditionally as well,

ϕ(E[X|E ]) ≤ E[ϕ ◦X|E ].

For multivariate random variables (ordered collection of random variables) X = (Xi)
n
i=1 : Ω −→ Rn with the target space

assuming the Lebesgue measure on B(Rn), the corresponding characteristic function becomes

φX(α) = ⟨exp ıα ·X⟩,
6E is a σ–algebra of Ω from definition 2.1.1.
7The E notation is used for random variable conditioning as it is of the “same kind” as the main argument (also a random variable), unlike

conditioning with a sub–σ–algebra. However behind the scenes the forms are equivalent.
8This is possible because Y as a random variable (definition 2.1.6) is F–measurable, therefore Y −1(∆) ∈ F , meaning the measure is well defined

∀∆ ∈ B(R). In general σ(Y ) ≤ F (with equality meaning no conditioning).

35



2. Stochastic processes

where
α ·X =

∑︂n

i=1
αiXi

is simply a linear combination of the random variables in X expressed in the default inner product of Rn.

Per the definition 2.1.14, a collection of random variables X is independent if and only if the joint distribution FX and the
marginal distributions FXi

, ∀i ∈ Nn, relate as

FX(x) =
∏︂n

i=1
FXi

(xi), ∀x ∈ Rn.

If the joint fX and marginal fXi , ∀i ∈ Nn, densities exist,

fX(x) =
∏︂n

i=1
fXi(xi), ∀x ∈ Rn.

For two independent random variables X and Y , the measurable function ϕ in theorem 2.1.18 for E[X|Y ] is in fact the
marginal density fY , and

fY (y) =

∫︂
R
fX,Y (x, y)dx.

2.2. Stochastic processes

Definition 2.2.1. A time index set T is a totally–ordered set with a (unique) strict minimum 0, i.e. ∀t ∈ T with t ̸= 0, t > 0
with the induced strict total ordering.9A complete time index set T also includes a (unique) strict maximum ∞, labeled as
such to represent the end of time.

Both N and R+ ∪ {0} are time index sets, with their completed variants N ∪ {∞} and R+. However, Nn, ∀n ∈ N, and [0, τ ],
∀τ ∈ R+ are also complete (finite) time index sets. N as a time index is discrete, while R is continuous.

Definition 2.2.2. A collection
X = {Xt : Ω −→ R|t ∈ T} : T×Ω −→ R

of random variables for a time index T is a stochastic process.

For a discrete time index, X is also termed a stochastic sequence.

∀t ∈ Σ, Xt : Ω −→ R is a particular state (and a random variable) of the stochastic process X.

∀ω ∈ Ω, X(ω) : T −→ R is particular sample path of the stochastic process X.

Definition 2.2.3. The σ–algebra of events generated by a stochastic process is

X =
⋁︂

t∈T
σ(Xt).

A σ–algebra is generated for subsets of the time index Σ as well. Of particular interest are the subsets I ⊆ T bounded by
two time limits a, b ∈ T,10

• I = [a, b] = {t ∈ T|a ≤ t ≤ b} ⊆ T,

• I = [a, b[= {t ∈ T|a ≤ t < b} ⊆ T,

• I =]a, b] = {t ∈ T|a < t ≤ b} ⊆ T,

• I =]a, b[= {t ∈ T|a < t < b} ⊆ T,
9It is indeed unique in the strict ordering sense; assuming ∃0′ ∈ T also strict minimum with 0′ ̸= 0, both 0′ > 0 and 0′ < 0 from the definition of

the strict minimum.
10Generalizing the notion of intervals in R, which solely rely on the total ordering of the set.
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2.2. Stochastic processes

denoted as
XI =

⋁︂
t∈I

σ(Xt).

For a stochastic process X:

• the past of the process is described by X<t = X[0,t[,

• the complete past of the process is described by X≤t = X[0,t],

• the present of the process is described by X=t = X[t,t],

• the future of the process is described by X>t = X]t,∞[,

• the complete future of the process is described by X≥t = X[t,∞[,

If the time index T has a maximum time ∞, the upper time bound of the future of a process X is closed instead.

As a random variable induces a probability measure on B(R), a stochastic process induces a probability measure on
B(T)⊗ B(R), which is a (product) σ–algebra.11

A contained in I ⊆ T stochastic subprocess XI : I ×Ω −→ R can then be measurable on the B(I)⊗F σ–algebra.

Definition 2.2.4. A filtration F on a probability space is a family {Ft}t∈T of sub–σ–algebras of F such that ∀t, t′ ∈ T with
t′ ≤ t, Ft′ ≤ Ft.

It is straightforward to see that a filtration F assumes a total ordering with a global minimum F0 (and optionally a global
maximum F∞ if T is complete).12 If T is discrete, the filtration is well–ordered (see also definition 2.2.4).13

A filtration models the information growth with time related to an experiment prescribed by the σ–algebra of all events on
a probability space, elevating the corresponding probability space to a filtered probability space.

The σ–algebras in definition 2.2.3 form the so–called natural filtration of the process X.

Definition 2.2.5. ∀t ∈ T,
Ft+ =

⋂︂
t′>t
Ft

is the immediate future σ–algebra to time t on the filtration F = {Ft}t∈T, while14

Ft− =
⋁︂

t′<t
Ft

is the past σ–algebra to time t.

A filtration F is right–continuous if and only if ∀t ∈ T, Ft = Ft+, i.e. the lower bound of the totally ordered (possibly
uncountable) intersection is included in it. A filtration F is complete if the corresponding probability space is complete and
∀A ∈ F∞ with ρ(A) = 0, A ∈ F0+, i.e. all σ–algebras of the filtration contain all the null events of F∞. Both right–continuity
and completeness ar labeled as usual conditions.
11To include discrete times in this case, a topology has to be devised for N. As a countable set, it makes sense to use the power set 2N, which is a

trivial topology for all sets. In this case, B(N) = 2N as well. In such cases space delimiters have no meaning and the closed interval will be used.
12The notation F∞ is used for all the evens in Ω in the sense, that any filtration will maximally contain all events eventually in time T, if at all.

This way the symbol F is reserved for the filtration itself, in par with the notation used for a stochastic process X.

F∞ ⊇
⋁︂

F =
⋁︂

τ∈T
Fτ ,

with equality holding for T complete (∃maxT = ∞ ∈ T).
13The difference is that with a partial ordering, not all pairs of elements are comparable but, for those that are, the same properties of the total

ordering hold. In total ordering, every pair of elements is comparable.
14∀A a family of σ–algebras, ⋂︂

F∈A
F

is also a σ–algebra. Indeed:
• ∀F ∈ A, ∅ ∈ F ,therefore ∅ ∈ ∩F∈AF ,

• ∀A ∈ ∩F∈AF , A ∈ F meaning ¬A ∈ F , ∀F ∈ A,therefore ¬A ∈ ∩F∈AF ,

• ∀A ⊆ ∩F∈AF finite subcollection, A ⊆ F meaning ∪A∈AA ∈ F , ∀F ∈ A, therefore ∪A∈AA ∈ ∩F∈AF .
It is labeled as “immediate” because ∩F∈AF , as a lower bound of {F}F∈A, is not necessarily included in it (see Definition 2.2.4).
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2. Stochastic processes

Definition 2.2.6. A stochastic process X such that ∀t ∈ T, Xt is Ft–measurable, is adapted to the corresponding filtered
probability space.

A stochastic process is adapted to its natural filtration X by definition 2.2.3.

Definition 2.2.7. A stochastic process X such that ∀t ∈ T, X[0,t] is B([0, t])⊗Ft–measurable, is progressively measurable.

A progressively measurable stochastic process is adapted to the filtration of the filtered probability space it is defined on.

A random variable T : Ω −→ T is a random time. T is a stopping time if and only if ∀t ∈ T, {T ≤ t} = {ω ∈ Ω|T (ω) ≤ t} ∈ Ft.

The intuition behind a stopping time is that events defined by it only require information from the past alone.

Definition 2.2.8. ∀T : Ω −→ T a stopping time,

FT = {A ∈ F|A ∩ {T ≤ t} ∈ Ft,∀t ∈ T}

is the σ–algebra of events occurring by time T . T as a random variable is FT –measurable.

For T a stopping time and ∀t ∈ T, t and T + t are stopping times. For a countable collection T of stopping times supT
and inf T are stopping times. If T = {Tn}n∈N is a sequence of stopping times,15 lim supn∈N T and lim infn∈N T are stopping
times.

Proposition 2.2.9. ∀X progressively measurable stochastic process on a filtration F of a filtered probability space, and ∀T
stopping time, the random variable XT is FT –measurable.

The definition of time–contained natural filtrations (see definition 2.2.3) can also be defined by stopping times as well.

2.3. Martingales

Definition 2.3.1. A progressively measurable stochastic process X = {Xt}t∈T on a filtered probability space with filtration
F = {Ft}t∈T, for which ∀t ∈ T, E[Xt] <∞ and ∀t′ < t:

• E[Xt|Ft′ ] ≤ Xt′ , is a F–supermartingale,

• E[Xt|Ft′ ] = Xt′ , is a F–martingale,

• E[Xt|Ft′ ] ≥ Xt′ , is a F–submartingale.

Martingales are defined for both discrete and continuous time indices T, however the latter requires some technical assumptions
not really relevant to the use of stochastic processes in Monte Carlo simulations, therefore focus will be given in the case of
discrete time, as in [66]. This means that stopping times are henceforth also integer–valued random variables, in the range
N (including 0).

Theorem 2.3.2. ∀X F–martingale and ∀T non–decreasing sequence of stopping times, 16, XT is an F–martingale.

Analogous results hold for supermartingales and submartingales. This result allows replacing the time index with a random
time in martingales.

Example 2.3.3. ∀{ηn}n∈N countable collection of independent identically distributed noises,17 the stochastic process X
defined ∀n ∈ N by

Xn =
∑︂n

i=0
ηi,

is an martingale with respect to the filtration defined ∀n ∈ N by⋁︂n

i=0
σ(ηi).

15A collection {Ba}a∈A of sets is a sequence if and only if A is well ordered.
16∀ω ∈ Ω, ∀n, n′ ∈ N with n′ ≤ n, Tn′ (ω) ≤ Tn(ω).
17Also a stochastic noise in a sense.
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2.4. Wiener processes

Theorem 2.3.4 (Strong law of large numbers). ∀X F–super–, F–sub–, F–martingale such that supn∈N⟨|Xn|⟩ < ∞,
limn→∞X = X∞ with ⟨|X∞|⟩ <∞.

For martingales, the suprenum condition may be replaced with non–negativity of X.

Theorem 2.3.5. ∀X stochastic process consisting of independent identically distributed random variables Xn, ∀n ∈ N, such
that variance(X0) <∞,

limn→∞
∑︂n

i=0
Xi = ⟨X0⟩, almost surely.

2.4. Wiener processes

Markov processes have several equivalent definitions, all telling the same thing, that in a present state Xt of such a process
X at a time t ∈ T, the future and the past of the process are independent.

Definition 2.4.1. A stochastic process X such that ∀t ∈ T, ∀Fpast bounded X≤t–measurable function and ∀Ffuture bounded
X≥t–measurable function,

E[FpastFfuture|X=t] = E[Fpast|X=t]E[Ffuture|X=t] almost surely,

is a Markov process.

An equivalent definition describes a Markov process by its more famous description that its future is not dependent on its
past.

Definition 2.4.2. A stochastic process X such that ∀t ∈ T and ∀Ffuture bounded X≥t–measurable function,

E[Ffuture|X=t] = E[Ffuture|X≤t] almost surely,

is a Markov process.

∀A ∈ X≤t with Fpast = 1A and ∀B ∈ X≥t with Ffuture = 1B , these definitions reduce to probability definitions respectively,

ρ(AB|X=t) = ρ(A|X=t)ρ(B|X=t) and ρ(B|X=t) = ρ(B|X≤t).

For a discrete time index T, a Markov process is a Markov chain.

Example 2.4.3. ∀η = {ηn}n∈N a sequence of independent random variables and ∀{fn : R × R −→ R}n>0 collection of
measurable on B(R)⊗ B(R) functions, the stochastic process X = {Xn}n∈N defined ∀n ∈ N by,18

Xn = fn ◦ (Xn−1 ⊗ ηn), X0 = η0,

is a Markov chain.

The underlying theory of transition probabilities ensures that Markov processes with special conditions can be formed from
an initial random condition and a transition function (kernel) that advances the process by induction. This induction depends
only on the immediately previous state for the case of Markov chains, as shown in example 2.4.3.

∀T a time index which is also a field with addition + and multiplication · (definition 1.1.4), and ∀{tn}n∈N ⊆ T sequence of
times with t0 = 0 ∈ T, {∆tn = tn − tn−1}n>0 is a sequence of time increments defined by {tn}n∈N.

Henceforth ∀X a stochastic process, the states of the process at times {tn}n∈N will be labeled by the new index directly, as
{Xn}n∈N. In effect, N constitutes a time discretization of T (if T ≃ R+), and {Xn}n∈N is a countable subprocess of X. If NN ,
∀N ∈ N is used instead, a finite subprocess of X is extracted, which is also a vector random variable. The finite–dimensional
distributions of a stochastic process refers to the distribution of its finite subprocesses.

∀X a stochastic process, let ∆X be a process of increments in that ∀n > 0, ∆Xn = Xn −Xn−1.
18∀X,Y, Z sets and ∀f : X −→ Z : x ↦−→ f(x) and ∀g : Y −→ Z : y ↦−→ f(y) functions with the same target set,

h = f ⊗ g : X × Y −→ Z × Z : (x, y) ↦→ h(x, y) = (f(x), g(y))

39



2. Stochastic processes

Definition 2.4.4. A stochastic process X such that ∀{tn}n∈N ⊆ T sequence of times, the random variables induced by the
corresponding states of the increments process ∆X on said times are independent, is said to be a process of independent
increments.

To define such a process, only the initial distribution and those of increment random variables are necessary, as can be seen
by the characteristic function of the finite–dimension distributional distributions of finite subselections of states on the times
given: ⟨︂

exp ı
∑︂n

i=0
αnXn

⟩︂
=
⟨︂
exp ı

(︂
α0X0 +

∑︂n

i=1

∑︂n

j=i
αi∆Xn

)︂⟩︂
= ⟨exp ıα0X0⟩

∏︂n

i=1

⟨︂
exp ı

∑︂n

j=i
αi∆Xn

⟩︂
Proposition 2.4.5. A process with independent increments is a Markov process.

Henceforth for random vectors a generic vector space V on a field of finite dimension with an inner product ·, and a possible
conjugation ·∗ on a field K with a topology T ,19 will be assumed as the target space, i.e. X : Ω −→ V . For random variables,
the generic field K will be used, but in reality either R or the algebraically closed C with conjugation will be meant, i.e.
X : Ω −→ K, with B(K) defined by the topology T on K. Lastly, besides being well–ordered, the time index T will be
assumed a field as well.

Definition 2.4.6. A random variable X : Ω −→ K with Gaussian probability density function,

f : K −→ R+ : x ↦→ f(x) =
1√
2πσ2

exp

(︃
− |x− µ|

2

2σ2

)︃
,

with µ ∈ R and σ2 ∈ R+.

The parameters of the Gaussian density define the first (and all) the moments of X,

⟨X⟩ = µ and variance(X) = σ2

The case σ2 = 0 is formally definable with Dirac’s δ distribution:

Definition 2.4.7. Dirac’s δ on a field K with a topology T , is a measure on B(K) = σ(T ) such that, ∀A ∈ B(K),

δ(A) =

{︄
1 0 ∈ A
0 0 /∈ A

,

where 0 ∈ K is the unit element of the field addition (and the destructive element of the field product) in K (definition 1.1.4).

∀f : K −→ K, ∫︂
K
fdδ = f(0).

Dirac’s δ is extensible to vector spaces with a topology as is.

For a vector random variable X : Ω −→ V , dimV ∈ N, the corresponding (orthonormal Gaussian density becomes

f : V −→ R+ : x ↦→ f(x) =

(︄∏︂dimV

n=1

1√︁
2πσ2

n

)︄
exp

(︃
−
∑︂dimV

n=1

(xn − µn)
2

2σ2
n

)︃
.

The base–independent form for a generic vector space V ,

f : V −→ R+ : x ↦→ f(x) =
√︂
(2π)− dimV (det υ)−1 exp

1

2
(x− µ) · υ−1 · (x− µ),

19See chapter 1. Mathematical foundation for details.
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2.4. Wiener processes

where υ : V −→ V is a non–singular (∃υ−1) positive definite (and hence hermitian) operator on V and µ and x are vectors
on V .

The Gaussian characteristic is
⟨exp ıα ·X⟩ = exp

(︃
ıα · α− 1

2
α · υ · α

)︃
.

Gaussian random variables are uniquely determined by the first two moments µ and υ. If υ is diagonal, the random variables
defining the finite random vector X are termed uncorrelated.

Proposition 2.4.8. Uncorrelated random variables in a finite–dimensional random vector X are independent.

Definition 2.4.9. A finite stochastic processX≤t, ∀t ∈ T, is Gaussian if and only if every discrete finite subprocess {Xn}n∈Nν
,

∀ν ∈ N, of X is Gaussian.

Proposition 2.4.10. ∀X = {Xn}n∈N a Gaussian stochastic sequence and ∀X a random variable with limn→∞Xn = X, X
is also Gaussian.

The proposition 2.4.10 extends to a sequence of stochastic processes.

Definition 2.4.11. A stochastic process X whose finite–dimensional distributions are independent of a time–shift t ∈ T are
strictly stationary.

All moments of a stochastic process are functions of the form

moment(X) : T −→ K : t ↦→ moment(Xt).

Of particular interest in strictly stationary processes are the first two moments:

• the expectation µ(t) = ⟨Xt⟩ is constant,

• the correlation υ(t′, t) = covariance(Xt′ , Xt) = ⟨Xt′ − µ(t′)|Xt − µ(t)⟩ = υ(t− t′) depends only on the time difference.

The converse is not true, defining a widely stationary process X, which satisfies these two moment conditions. However a
Gaussian wide stationary process is a strictly stationary process.

Let
φ : V −→ R+ : x ↦→ φ(x) = (2π)− dimV/2 exp

1

2
(x− µ) · (x− µ)

be the standard Gaussian density with mean 0 and variance 1dimV .

Definition 2.4.12. ∀x ∈ K, a Wiener process (or Brownian motion) W = {Wt}t∈T with W0 = x (a deterministic initial
condition) is a stationary standard Gaussian process. The Wiener process W with W0 = 0 is a standard Wiener process.

As such, a Wiener process is a process of independent increments, and more specifically:

• ∀t ∈ T, ⟨∆Wt⟩ = 0,

• ∀∆t ∈ T on t, variance(∆Wt) = ⟨∆Wt|∆Wt⟩ = ∆t,

For the Wiener process W itself:

• ∀t ∈ T, ⟨Wt⟩ = x,

• ∀t′, t ∈ T, covariance(Wt′ ,Wt) = ⟨Wt′ − x|Wt − x⟩ = min{t′, t}.
A Brownian motion has a continuous modification with continuous sample paths [66], therefore it will henceforth be assumed
as such directly.

Theorem 2.4.13. ∀x ∈ R and a finite stochastic process X≤t with X0 = x adapted to a filtration F such that, ∀t ∈ T
∀∆t ∈ T on t:

• E[∆Xt|Ft] = 0 almost surely or X is a martingale,

• E[(∆Xt)
2|Ft] = ∆t almost surely or {X2

t − t}t∈T is a martingale,

is a Wiener process.
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2. Stochastic processes

Properties of a Wiener process W with W0 = x

• (stochastic exponent) ∀α ∈ K, the process {︃
Mt = exp

(︃
αWt −

1

2
α2t2

)︃}︃
is a martingale with respect to the natural filtration W of W ,20 i.e.

E[expα∆Wt|Wt] = exp
1

2
α2∆t almost surely.

• (strong Markov property) ∀T stopping time, {∆Wt =Wt+T −Wt}t∈T is a Wiener process independent of W.

0 10000 100000

0

standard Wiener paths and their eventual bounds

Figure 2.4.1.: A collection of Wiener process realization with their eventual bounds. One of the sample paths appears to
require more thermalization time, as it still breaches the bounds.

Properties of a standard Wiener process W

• (spatial homogeneity) ∀x ∈ K, {Wt + x}t∈T is a Wiener process starting on x,

• (symmetry) −W is a (standard) Wiener process,

• (scaling) ∀α ∈ T, {
√
αWt/α}t∈T is a (standard) Wiener process,

• (time reversibility) ∀α ∈ T, {Wt}t≤α and {Wα −Wα−t}t≤α are identical in probability,

• (strong law of large numbers) limt→∞ tWt = 0 almost surely.

• (law of iterated logarithm) A standard Wiener process W is eventually bound by ±
√
2t log log t (figure 2.4.1):

lim supt→∞
Wt√

2t log log t
= +1 and lim inft→∞

Wt√
2t log log t

= −1

20See definitions 2.2.3 and 2.2.4.
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3. Stochastic calculus

3.1. The Itô integral

Initially, time integrals of the type ∫︂ τ

0

ftdWt

for (possible random) functions f satisfying specific conditions and a measure induced by the Wiener process W need to be
defined.1 Assume a probability space Ω with events F∞, a probability measure ρ on them, and a filtration F on a time index
T, satisfying all usual conditions listed after definition 2.2.5.

Definition 3.1.1. ∀p ∈ N, let Lp(ρ) be all the almost–everywhere p–norm ρ–integrable random functions, i.e. ∀X : Ω −→ V ∈ Lp(ρ)∫︂
∥X∥ppdρ <∞,

where the p–norm is defined ∀x ∈ V by

∥x∥pp =
∑︂dimV

i=1
|xi|p,

with the special case ∥x∥22 = x · x for the inner product of V .

Lp(ρ) is a Hilbert (infinite–dimensional vector) space with inner product defined ∀X,Y ∈ L2(ρ) by

⟨X|Y ⟩ =
∫︂
X · Y dρ

For V = R, all p–norms reduce to an absolute value defined by the addition on R and the inner product to the product on
R.2 For simplicity, X is assumed real.

∀τ ∈ T, H2[0, τ ] is the space of all progressively measurable stochastic processes X : T×Ω −→ R that satisfy∫︂ τ

0

⟨Xt|Xt⟩dt <∞. (3.1.1)

The inner product of L2(ρ) appears to naturally extend to H2[0, τ ] via the correspondence

X ←→
∫︂ τ

0

XtdWt,

defining an isometry between the two spaces, however special conditions apply [66], namely ∀X ∈ H2[0, τ ]⟨︃∫︂ τ

0

XtdWt

⟩︃
= 0 and

⟨︃∫︂ τ

0

XtdWt

⃓⃓⃓⃓ ∫︂ τ

0

XtdWt

⟩︃
=

∫︂ τ

0

⟨Xt|Xt⟩dt, (3.1.2)

where it becomes apparent that the integral ∫︂ τ

0

XtdWt

is (naturally) a random variable on Ω −→ R. If however τ ∈ T is assumed variable, the aforementioned integral becomes
a stochastic process itself. In what follows, τ may be ∞, therefore time index T itself is simply assumed, whether finite or
infinite.
1One can naively expect that the process W : T×Ω −→ R induces a measure (law) ρW on B(R) by the product measure defined on B(T)⊗F∞,

however stochastic integration involving time requires some extra conditions, which are explored in this chapter.
2See definition 1.1.4 for details.

43



3. Stochastic calculus

Theorem 3.1.2. ∀X ∈ H2(T), the stochastic process{︃∫︂ τ

0

XtdWt

}︃
τ∈T

(3.1.3)

is an almost surely continuous martingale, such that⟨︃
supτ∈T

⟨︃∫︂ τ

0

XtdWt

⃓⃓⃓⃓ ∫︂ τ

0

XtdWt

⟩︃⟩︃
≤ 4

∫︂ τ

0

⟨Xt|Xt⟩dt.

Example 3.1.3. The stochastic process W defined ∀x ∈ R, ∀f, g : T −→ R, non–random functions, such that ∀τ ∈ T,

W τ = x+ f(τ) +

∫︂ τ

0

g(t)dWt,

is a Gaussian process with independent increments, such that

⟨W τ ⟩ = x+ f(τ).

Condition (3.1.1) states that random variables in H2(T) are square–integrable in mean. If this condition is relaxed to almost
certain square–integrability, H2(T) is expanded to L2(T), which allows the definition of a process integral like (3.1.3) but
with a random time T : Ω −→ T [66],

Example 3.1.4 (a Langevin process). ∀α, β progressively measurable with respect to the filtration F stochastic processes
such that

√
α, β ∈ L2(T), and W a standard Wiener process with F–independent increments,3, the stochastic process X such

that X(0) is F0–measurable and ∀τ ∈ T,

Xτ −X0 =

∫︂ τ

0

αtdt+

∫︂ τ

0

βtdWt, (3.1.4)

defines a Brownian motion with drift α and noise β.4

Definition 3.1.5. The integral form (3.1.3) defined an equivalent differential form,

dXt = αtdt+ βtdWt, (3.1.5)

(3.1.5) is the precursor for stochastic differential equations, whose solutions are stochastic processes.

Definition 3.1.6 (Itô’s formula). ∀f : R −→ R twice differentiable on R and ∀t ∈ T,

df ◦Wt = ∂xf ◦WtdWt +
1

2
∂2x ◦Wtdt, ∂x=

∂

∂x
.

A weaker condition applies to Itô’s formula; it is sufficient for f to be once–differentiable only, but ∃g : R −→ R measurable
on B(R) such that ∀x ∈ R,

∂xf(x)− ∂xf(0) =
∫︂ x

0

g(y)dy.

Then, ∀t ∈ T,

df ◦Wt = ∂xf ◦WtdWt +
1

2
g ◦Wtdt.

Theorem 3.1.7 (Itô’s formula). ∀f : T×R −→ R, piecewise–twice continuously differentiable on T×R (assuming T = R),
∀t ∈ T and ∀ω ∈ Ω,5

dft ◦Wt = ∂tft ◦Wtdt+ ∂xft ◦WtdWt +
1

2
∂2xf ◦Wtdt.

3∀t ∈ T and ∀∆t ∈ T on t, ∆Wt is independent of the events Ft ∈ F.
4These functions assume for consistency a notation similar to stochastic processes.
5Such formulas should normally be written ∀ω ∈ Ω, which is omitted for brevity. ∀f : R −→ R function and ∀X : T×Ω −→ R stochastic process,

∀t ∈ T, Xt : Ω −→ R is a random variable, so only f ◦ Xt makes sense if ω–dependence is to be omitted. Such formulations become difficult
when multiple variables get involved, and some textbooks write f(Xt) when they actually mean ∀ω ∈ Ω, f(Xt(ω)), in effect treating a random
variable as a variable and not the function on the sample space Ω that it actually is.

44



3.2. Stochastic differential equations

∀X a random variable of the form
dXt = αtdt+ βtdWt

∀α, β as in example 3.1.4, Itô’s formula becomes ∀t ∈ T and ∀ω ∈ Ω,

dft ◦Xt = ∂tft ◦Xtdt+ αt∂xft ◦Xtdt+ βt∂xft ◦XtdWt +
1

2
β2
t ∂

2
xft ◦Xtdt, (3.1.6)

In what follows, explicit dependence on time will be omitted.6 In such notation, (3.1.6) becomes

df ◦X = ∂tf ◦Xdt+ α∂xf ◦Xdt+ β∂xf ◦XdW +
1

2
β2∂2xf ◦Xdt. (3.1.7)

Definition 3.1.8. ∀f : T × V −→ R twice continuously differentiable functional for a real vector space V ≃ RdimV ,
∇xf : V −→ V stands for the vector of partial derivatives of f on V (excluding time T), and ∇x⊗∇xf : V −→ L(V ) stands
for the (Jacobian) matrix of second–order partial derivatives of f . In this notation, the derivative with respect to time is still
abbreviated as ∂tf .

By definition 3.1.8, ∀f : T× V −→ R, Itô’s formula generalizes ∀t ∈ T to

df ◦X = ∂tf ◦Xdt+ α · ∇xf ◦Xdt+ β · ∇xf ◦XdW +
1

2
β · ∇x ⊗∇xf ◦X · βdt,

where (·|·) is the inner product of V . 7

There is an alternative definition of the stochastic integral due to Stratonovich, denoted with • instead of ·,8 which relates
to Itô’s formula by the differential notation

f ◦W • dW = f ◦WdW +
1

2
∂xf ◦Wdt.

Stratonovich’s integral changes Itô’s formula (for f : R −→ R) into a form that resembles its deterministic counterpart,

df ◦W = ∂xf ◦W • dW = ∂xf ◦WdW +
1

2
∂2xf ◦Wdt.

The intuitive difference between the two formulations is the logic by which time differences ∆τ ∈ T and their effect on
stochastic processes are treated. By Itô’s logic, the reference point for the corresponding ∆X is τ , whereas by Stratonovich’s
logic, it is (τ +∆τ)/2.

The intuition behind Itô’s formula is describing the total differential df ◦W of the stochastic process f ◦W : T × Ω −→ R
induced by a function f : R −→ R and the Wiener process W . This can be illustrated by deducing Itô’s formula from the
(naive) Taylor expansion in computing the total differential df ◦W . Aside from eliminating dt higher orders, ⟨(dWt)

2⟩ ∝ dt,
∀t ∈ T, which is why the second order derivative remains in Itô’s formula.

3.2. Stochastic differential equations

Definition 3.2.1. ∀β ∈ L2(T) and ∀X stochastic process, such that ∀t ∈ T,

dXt = βtdWt −
1

2
β2
t dt,

6The function composition ◦ takes precedence over function operations. Operators on functions (as vectors, like ∇) take precedence over function
composition.

7By chapter 1. Mathematical foundation, the notation β ·∇x ⊗∇xf ◦X ·β is possible because V is real and the Jacobian ∇x ⊗∇xf is symmetric
(hermitian) for f twice continuously differentiable on V .

8The usual notation for Stratonovich’s calculus is ◦, but since the function composition is explicitly used here in consistency with the functional
nature of random variables, • is used instead to avoid confusion.
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3. Stochastic calculus

the stochastic process P = expX is a stochastic exponent. Applying Itô’s formula (3.1.7) for f = exp and no time dependence
(i.e. Pt = f ◦Xt, ∀t ∈ T),

dPt = βtPtdWt −
1

2
β2
t Ptdt+

1

2
β2
t Ptdt,

or
dPt = βtPtdWt, P0 = 1,

which is a first instance of a stochastic differential equation, that is not directly integrable.

For the sake of defining a Cauchy problem for stochastic differential equations, all used symbols and assumptions are re–
iterated.

Definition 3.2.2. LetΩ be a probability space of events F with probability (measure) ρ, filtered by {Ft}t∈T for a (continuous)
time index T. Let W : T×Ω −→ R be a Wiener process with W0 = x ∈ R and ξ : Ω −→ R a random variable independent
of Wτ , ∀τ ∈ T. Let the filtration of Ω be generated by the processes W and ξ, as in ∀τ ∈ T

Fτ = σ(ξ) ∨
⋁︂τ

t=0
σ(Wt).

Finally let α, β : T× R −→ R be measurable on B(T)× B(R) functions.

The continuous F–adapted stochastic process X : T × Ω −→ R with initial condition X0 = ξ is a strong solution to the
stochastic differential equation

dXt = αt ◦Xtdt+ βt ◦XtdWt,

if ∀τ ∈ T, ∫︂ τ

0

(|αt ◦Xt|+ |βt ◦Xt|2)dt <∞,

and

Xτ = ξ +

∫︂ τ

0

αt ◦Xtdt+

∫︂ τ

0

βt ◦XtdWt.

Theorem 3.2.3. If α, β satisfy the Lipchitz condition, meaning ∃ℓ > 0 such that, ∀τ ∈ T and ∀x, y ∈ R,

|ατ (x)− ατ (y)|+ |βτ (x)− βτ (y)| ≤ ℓ|x− y|,

and the corresponding linear growth condition, meaning

|ατ (x)|+ |βτ (x)| ≤ ℓ(1 + |x|),

and ⟨|ξ|2⟩ <∞, ∃X unique strong solution with X0 = ξ to the stochastic differential equation

dXt = αt ◦Xtdt+ βt ◦XtdWt, (3.2.1)

satisfying supt∈T⟨|Xt|2⟩ <∞.

(3.2.1) is the most generic form of a time–dependent first–order linear stochastic differential equation, consisting of a drift
function α and a noise function β. The drift is basically the deterministic part of the equation, and the noise is what makes
it stochastic.

The linear variant of (3.2.1),
dXt = αtXtdt+ βtXtdWt,

has general solution, ∀τ ∈ T,

Xτ = exp

(︃∫︂ τ

0

βtdWt +

∫︂ τ

0

(︃
αt −

1

2
β2
t

)︃
dt

)︃
.
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3.2. Stochastic differential equations

Definition 3.2.4. Let V ≃ RdimV be a vector space of finite dimension and an inner product

(·|·) : V × V −→ R : x, y ↦→ x · y =
∑︂dimV

i=1
xiyi,

and consequent 2–norm
∥ · ∥ : V −→ R+ : x ↦→ ∥x∥ =

√
x · x,

x ∈ V and W : T × Ω −→ V a multidimensional Wiener process with independent components and W0 = x. Likewise in
definition (??), let ξ : Ω −→ V be a stochastic process independent of Wτ , ∀τ ∈ T. Let the filtration F be generated by the
initial ξ and W as in

Fτ =
⨂︂

σ(ξ) ∨
⋁︂τ

t=0

⨂︂
σ(Wt),

where the product σ–algebras of the corresponding (independent) components appear. Let α : T×V −→ V be a measurable
on B(T)×B(V ) vector function, and β : T× V −→ L(V ) a measurable on B(T)×B(L(V )) matrix function, assuming L(V )
has the Frobenius norm, defined by the inner product

· : L(V )× L(V ) −→ R : F,G ↦→ F ·G = trF⊤G =
∑︂dimV

i=1

∑︂dimV

j=1
FijGij ,

as
∥ · ∥ : L(V ) −→ R+ : F ↦→ ∥F∥ =

√
F · F .

The continuous in the topology of V induced by its inner product F–adapted vector stochastic process X : T × Ω −→ V
with initial condition X0 = ξ is a strong solution to the vector stochastic differential equation

dXt = αt ◦Xtdt+ βt ◦XtdWt,

if ∀τ ∈ T,9 ∫︂ τ

0

(∥αt ◦Xt∥+ ∥βt ◦Xt∥2)dt <∞,

and

Xτ = ξ +

∫︂ τ

0

αt ◦Xtdt+

∫︂ τ

0

βt ◦XtdWt.

Theorem 3.2.5. If α, β (uniformly in components) satisfy the Lipchitz condition, meaning ∃ℓ > 0 such that, ∀τ ∈ T and
∀x, y ∈ R,

∥ατ (x)− ατ (y)∥+ ∥βτ (x)− βτ (y)∥ ≤ ℓ∥x− y∥,

and the corresponding linear growth condition, meaning

∥ατ (x)∥+ ∥βτ (x)∥ ≤ ℓ(1 + ∥x∥),

and ⟨∥ξ∥2⟩ <∞, ∃X unique strong solution with X0 = ξ to the stochastic differential equation

dXt = αt ◦Xtdt+ βt ◦XtdWt, (3.2.2)

satisfying supt∈T⟨∥Xt∥2⟩ <∞.

The vector stochastic differential equation (3.2.2) is in effect a (linear) set of stochastic differential equations.

∀W ′ : T × Ω −→ V dependent vector Wiener process, ∃M ∈ L(V ) transformation matrix such that W = MW ′ is an
independent vector Wiener process, therefore all linear stochastic Cauchy problems reduce to ones with independent noise,
as in definition 3.2.4.
9Note that ∀t ∈ T, βt ◦ Xt : Ω −→ L(V ) is an “operator” random variable, thus ∀ω ∈ Ω, the result may act on the image of another random

vector, namely dWt : Ω −→ V in this case. Hence the shorthand notation βt ◦ XtdWt : Ω −→ V is in fact a random vector in itself as a
matrix–vector product.
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3. Stochastic calculus

Definition 3.2.6 (Langevin equation). Another simplification of (3.2.1), is with time–independent drift σ : V −→ R and
noise µ : V −→ R and deterministic initial condition x ∈ V ,

dXt = σ ◦Xtdt+ µ ◦XtdWt, X0 = x. (3.2.3)

Adapting the conditions of theorem 3.2.5, namely the Lipchitz condition, ∃ℓ ∈ R+ such that, ∀x,∆x ∈ V ,

∥∆σ(x)∥+ ∥∆µ(x)∥ ≤ ℓ∥∆x∥,

and the linear growth condition
∥σ(x)∥+ ∥µ(x)∥ ≤ ℓ(1 + ∥x∥),

assert by theorem 3.2.5 the existence and uniqueness of a solution to (3.2.2).

⟨·⟩x denotes the expectation with respect to the probability measure ρx induced on B(V ) by the stochastic processX : T×Ω −→ V
(solution of (3.2.3)) starting at X0 = x ∈ R,10 a notation which is possible thanks to the well placed Cauchy problem for
stochastic differential equations (existence and uniqueness given initial condition).

3.3. Diffusion processes

Definition 3.3.1. ∀X : T×Ω −→ V a Markov process, a function ϱ : (T× V )2 −→ R+ such that:

• ∀t, t′ ∈ T and ∀x ∈ V , ϱ(t, x, t′, ·) : V −→ R+ and ϱ(t, x, t′, ·) : V −→ R+ are measurable on B(V ),11

• ∀t ∈ T and ∀x, x′ ∈ V , ϱ(t, x, t, x′) = δ(x − x′), where δ is the Dirac distribution stemming from the Dirac measure
δ : B(V ) −→ R+ such that ∀A ∈ B(V ) and ∀F : V −→ V ,

δ(A) =

{︄
1 0 ∈ A
0 0 /∈ A

and
∫︂
V

Fdδ = F (0).

• ∀t, t′, t′′ ∈ T with t′′ < t′ < t and ∀x, x′, x′′ ∈ V , the Chapman–Kolmogorov equation holds [66],

ϱ(t′′, x′′, t, x) =

∫︂
V

ϱ(t′′, x′′, t′, x′)ϱ(t′, x′, t, x)dµ(x′),

where integration is meant with respect to the Lebesgue measure µ giving parallelogram volume on all parallelogram
subsets of V .12

Proposition 3.3.2. The density law υX : T ⊗ V −→ R+ of a Markov process X is uniquely defined by an initial law
υ0 : V −→ R+ : x ↦−→ fX(0, x) and it transition function ϱX : (T × V )2 −→ R+.13 Conversely, ∀υ transition function, ∃X
Markov process corresponding to it.14

In that sense, the transition function progresses a Markov process, so all is needed is a starting point, in the distribution
space. Namely ∀t ∈ T and ∀x ∈ V ,

υX(t, x) =

∫︂
V

υ0(y)ϱ(0, y, t, x)dµ(y).

Definition 3.3.3. A Markov process X such that ∀t,∆t ∈ T, ∃µ : T × V −→ V drift and ∃σ : T × V −→ L(V ) noise (or
diffusion [66]), such that:
10According to definition 2.1.6, this is only applicable to random variables, unless the product measure of B(T)⊗F∞ is also a probability on T×Ω.
11In other words they are random variables on V with the Borel σ–algebra of events and therefore have a law defined on V . In some textbooks,

like [66], alternative definitions involving corresponding functions as measures are often given.
12∀{xn}dimV

n=1 ⊂ V base of V , and the change–base operator B ∈ L(V ) it defines, the volume of the parallelogram with the base vector as edges
has volume µ(B) = | detB|.

13Here the notation of the probability measure ρX : B(T) ⊗ B(V ) −→ R+ is abused to stand for the corresponding probability density function
fX : T× V −→ R+.

14In fact, there exists a whole family of Markov processes, distinct (but not necessarily uniquely) by an initial distribution.
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3.3. Diffusion processes

• lim∆t→0(∆t)
−1E[∆Xt|Xt = x] = µ(t, x),

• lim∆t→0(∆τ)
−1E[∆Xt ·∆Xt|Xt = x] = σ(t, x) · σ(t, x), or more generally,

• lim∆t→0(∆t)
−1E[∆Xt ⊗∆Xt|Xt = x] = σ(t, x)⊗ σ(t, x), [citation needed]

is a diffusion.

Theorem 3.3.4 (Kolmogorov backward equation). ∀X diffusion with continuous on V drift µ and noise σ, and probability
density ∀υ0 : V −→ R+ and ∀τ ∈ T such that

υ : [0, τ ]⊗ V −→ R+ : t, x ↦→
∫︂
V

υ0(χ)ϱ(t, x, τ, χ)dµ(χ)

is continuously twice differentiable on V , the latter satisfies the following Cauchy problem:

−∂tυ = µ · ∇xυ +
1

2
tr((σ ⊗ σ) · (∇x ⊗∇xυ)), limt→τ υ(t, x) = υ0(x),

The transition function ϱX of the diffusion X is uniquely defined by the drift µ and the noise σ.

Theorem 3.3.5 (Kolmogorov forward equation (Fokker–Planck)). ∀X diffusion with continuous on V drift µ and noise σ,
probability density ∀υ0 : V −→ R+ and ∀τ ∈ T such that

υ : T⊗ V −→ R+ : t, x ↦→
∫︂
V

υ0(χ)ϱ(τ, χ, t, x)dµ(χ)

is continuously twice differentiable on V , the latter satisfies the following Cauchy problem:

∂tυ =
1

2
tr((∇x ⊗∇x) · (σ ⊗ συ))−∇x · (µυ), υ(0, x) = υ0(x).

The Fokker–Planck equation essentially describes the evolution of the probability distribution υ(t, ·) of the state random
variable Xt with time t ∈ T.

Theorem 3.3.6. ∀X solution to a well–placed (stochastic) Cauchy problem as in definition 3.2.4,

dXt = µt ◦Xtdt+ σt ◦XtdWt, X0 = ξ,

X is a diffusion process with drift µ and noise σ.

For the special case of time–independent drift µ and noise σ,

dXt = µ ◦Xtdt+ σ ◦XtdWt, X0 = ξ,

the corresponding to X transition function ϱX is time–translation–invariant, ∀t, t′,∆t ∈ T and ∀x, x′ ∈ V ,

ϱX(t′ +∆t, x′, t+∆t, x) = ϱX(t′, x′, t, x),

meaning that the transition function depends only on time differences ∆t ∈ T. X is then a homogeneous diffusion.
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4. Stochastic Quantization

In this chapter, the machinery of stochastic processes calculus is summarized and reformulated in physics terms.

4.1. Assumptions

Stochastic differential equations

Let Ω be a probability space with a probability measure ρ (definition 2.1.4) on events F∞ (2.1.1) filtered by F (definition
2.2.4). Let V ≃ RdimV be a finite–dimensional real vector space (definition 1.1.5).

Let T = R+ be a real time index (definition 2.2.1) with the usual topology T (definition 1.2.1) of open intervals, total
ordering < (definition 1.1.2), field operations + and · (definition 1.1.4), and the Lebesgue measure on the Borel σ–algebra
B(T) = σ(T ), and τ : Ω −→ T a stopping time (definition 2.2.8).

Let Φ : T×Ω −→ V be a stochastic process (usually with the usual conditions, see for example definitions 2.2.2, 2.2.8, 2.2.8,
and usually a diffusion), whose notation is changed hereon to stand for a (physical) field Φ.1 For T×Ω assume the product
measure of the Lebesgue time measure and the probability measure ρ on the product σ–algebra B(T)⊗F∞ (definition 2.1.5).

Let time–independent drift µ : V −→ V and noise σ : V −→ L(V ) , that, together with a Wiener process W : T×Ω −→ V ,
define a pair of a stochastic equation for the field ϕ,

dΦ(τ) = µ ◦ Φ(τ)dτ + σ ◦ Φ(τ)dW (τ), Φ(0) = Φ0 : Ω −→ V,

and a Fokker–Planck equation for its probability transition density ϱ : T× V −→ R+,

∂

∂τ
ϱ =

1

2
σ · (∇⊗∇ϱ) · σ −∇ · (µϱ), ϱ(0) = ϱ0 : V −→ R+, (4.1.1)

with initial time τ0 = 0 and initial configuration ϕ0 = ⟨Φ0⟩. A typical initial distribution corresponds to said deterministic
field initial condition, which is represented by Dirac’s δ distribution on V (definition 2.4.7),

ϱ0(ϕ) = δ(ϕ− ϕ0),

although this is only formulaic, as Dirac’s δ measure has no corresponding density function (Radon–Nikodym derivative).

Rewriting (4.1.1) as
∂

∂τ
ϱ = −A⊤ϱ,

defines a (differential) Hamiltonian operator A that prescribes the time evolution of an observable O : T× V −→ R,

∂

∂τ
⟨O ◦ Φ⟩ = ⟨AO ◦ Φ⟩.

1Not to be confused with an algebraic field as in definition 1.1.4.

51



4. Stochastic Quantization

Expectation

∀Φ, Ψ : Ω −→ V ∈ L2(ρ) square integrable random variables, the following inner product is well defined,

⟨Φ|Ψ⟩ =
∫︂
Ω

Φ · Ψdρ, (4.1.2)

where · is the inner product of V . In consistency with the Dirac notation for vector spaces, ⟨Φ|Ψ⟩ is the projection of Ψ on Φ.
However, looking for a base may not be straightforward if dimL2(ρ) is uncountable. In such a case, a measure is required for
L2(ρ), which in turn requires a σ–algebra on L2(ρ), which in turn if it is to be the Borel σ–algebra B(L2(ρ)), a topology is
needed on L2(ρ). The inner product (4.1.2) guarantees a topology on L2(ρ) and as such a Borel σ–algebra B(L2(ρ)). Recall
that Lp(ρ) spaces in particular group random variables by version.2 Thus L2(ρ) is a measurable space. Defining a measure on
such a space however is highly non–trivial and will be postponed when simplified assumptions will enable its good definition.
Formally however, one define a projection operator (in Riemannian notation) as∫︂

L2(ρ)

|Φ⟩⟨Φ|DΦ,

where DΦ represents integration with respect to whatever well–defined measure L2(ρ) may have. In the context of physics,
this is known as a (Feynman) path integral [67].

The inner product (4.1.2), as it is built on the probability measure ρ of Ω, is in fact a correlator between Ψ and Φ.

H2,3 the vector space generated by stochastic processes Φ satisfying (3.1.2), also formally admits an inner product (and a
corresponding isometry to L2 at that), ∀Φ, Ψ : T×Ω −→ V ∈ H2(T),

⟨Φ|Ψ⟩ =
∫︂
T
⟨Φ(τ)|Ψ(τ)⟩dτ =

⟨︃∫︂
T
Φ(τ)dW (τ)

⃓⃓⃓⃓ ∫︂
T
Ψ(τ)dW (τ)

⟩︃
,

where integration is meant with the measure induced on T by the stopping time τ .

Realized sampling (ω ∈ Ω)

Mathematically speaking, random variables Ω −→ V , and by extension, stochastic processes T × Ω −→ V are tied to a
probability space Ω. Fixing ω ∈ Ω however yields a value in V out of a random variable or a sample path T −→ V out of a
stochastic process.

Hereon all random variables and stochastic processes will be assumed realized for a ω ∈ Ω. In this context, the stochastic
differential equation appears to be an ordinary one,

dϕ(τ) = µ(ϕ(τ))dτ + σ(ϕ(τ))dW (τ), ϕ(0) = ϕ0 ∈ V,

and the corresponding Fokker–Plank equation remains the same.

Note that, formulating problems in realized sample paths does not eliminate their stochasticity; every realization happens
randomly and the notion of expectation is relevant. Because diffusion processes have all the usual (good) properties with
respect to the filtration F of the corresponding probability space Ω, namely they are adapted and progressively measurable,
the filtration conditional may be omitted for brevity from expectations.

Discretized time

It is worth noting that path realization affect the stopping time τ : Ω −→ T. The original assumption for the time index is
T = R+. A straightforward discretization would be to switch to T = N. An alternate approach is to assume a sequence of

2Meaning they only differ on subsets of A ⊆ Ω with ρ(A) = 0.
3See section §3.1. The Itô integral.
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stopping times τ : N× Ω −→ R+ which, as it being stopping times, is (safely) realized to a sequence of times τ : N −→ R+

for fixed ω ∈ Ω.

In this context, the (ordinary) stochastic differential equation becomes

∆ϕn = µ(ϕn)∆τn + σ(ϕn)∆Wn, ∆·n = ·n − ·n−1, ∀n ∈ Z+. (4.1.3)

To generate a process ϕ, ϱ0 with known x0 needs to be known to realize an initial condition ϕ0. ∀n ∈ Z+, ∆τn > 0. Recalling
the definition 2.4.12 of a Wiener process,

⟨∆Wn⟩ = 0 and ⟨∆Wn|∆Wn⟩ = ∆τn, ∀n ∈ Z+,

so all is required is a distribution with these two moments, for example a Gaussian distribution with µ = 0 and σ =
√
∆τn,

to generate the noise ∆Wn. If a random variable η satisfying the standard Gaussian distribution (µ = 0 and σ = 1), equation
(4.1.3) becomes

∆ϕn = µ(ϕn)∆τn + σ(ϕn)η
√︁

∆τn, ∀n ∈ Z+. (4.1.4)

Given ϕ0, simply ϕn = ϕn−1 +∆ϕn ∀n ∈ Z+.

To avoid unnecessarily referring to a (non–definable) formal derivative of a Wiener process, it is this well–defined discretized
version of the stochastic differential equation that will be referred to upon as the Langevin equation (and the corresponding
process as a Langevin process).

It is worth noting that the L2 function space now realizes a well–defined projection operator for a countable collection
{ϕn}n∈N ⊂ L2, ∑︂

n∈N
|ϕn⟩⟨ϕn| =

∑︂
n∈N
|n⟩⟨n|,

where in the latter part, the specifics of base selection are ignored for the sake of generality. L2 as a vector space has its
own vector space of bounded operators L(L2). ∀A ∈ L(L2) hermitian (symmetric if K = R), ∀ϕ, ψ and for a particular
(countable) base of L2,

⟨ϕ|A|ψ⟩ =
∑︂

n∈N

∑︂
m∈N
⟨ϕ|n⟩⟨n|A|n⟩⟨n|ψ⟩ =

∑︂
n∈N

∑︂
m∈N

ϕnAnmψm. (4.1.5)

In this discretized time context, the Dirac notation may be abused for stochastic processes as well. ∀ϕ, ψ : N×Ω −→ V ,

⟨ϕ|ψ⟩ =
∑︂

n∈N
⟨ϕn|ψn⟩,

assuming the sum converges.4This simply means that the identity operator on stochastic processes is not bounded, which
is not unexpected. Correlators like (4.1.5), may however converge under the right conditions for the operator A and the
differential equation generating ϕ and ψ.

Einstein indexing

Per definition 1.1.16, assume that ∀ϕ ∈ V , x ∈ NdimV is the integer index running through coordinates ϕx. In such a case,

∆ϕ = µ(ϕ)∆τ + σ(ϕ)η
√
∆τ is written as ∆ϕx = µx(ϕ)∆τ + σx(ϕ)η

√
∆τ ,

with the free index x depicting the vector nature of the equation, and equivalently, the fact that it is in fact a system of
equations.

In this form it becomes apparent how this equation may be generalized with a vector Wiener process as

∆ϕx = µx(ϕ)∆τ + σxy(ϕ)ηy
√
∆τ = ∆ϕx = µx(ϕ)∆τ +

∑︂
y
σxy(ϕ)ηy

√
∆τ ,

4For finite time index, it does, however, a finite time index is in fact a variable one, assuming it simulates the corresponding infinite–time (and
continuous) stochastic process, therefore concerns of convergence are relevant. As a counter example,

∥∆W∥2 =
∑︂

n∈N
∥∆Wn∥2 =

∑︂
n∈N

∆τn = ∞,

for stationary stopping time τ or with a fixed time step.
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4. Stochastic Quantization

where the noise σ : V −→ L(V ) now maps to a linear operator instead of a vector.

The Fokker–Planck equation becomes

∂

∂τ
ϱ =

1

2
∂x∂y(σxzσyzϱ)− ∂x(µxϱ) =

1

2

∑︂
x
∂x
∑︂

y
∂y
∑︂

z
(σxzσyzϱ)−

∑︂
x
∂x(µxϱ).

The repeating index summation convention (definition 1.1.16) is emphasized here for clarity.

Action and stationary noise

The generic noise function σ : V −→ V is replaced by a constant σ ∈ R+. In consistency with the fact that (realized) ϕ ∈ V ,
(realized) η ∈ V instead of R, and the noise term of equation (4.1.4) becomes

σ(ϕ)η
√
∆τ −→ ησ

√
∆τ −→ η

√
∆τ ,

or σxy = δxy, where in the latter change, the constant σ is absorbed as standard deviation of the distribution of η,

⟨η|η⟩ = σ2∆τ.

Furthermore, the drift function µ : V −→ V is assumed to be a derivative of a bounded from below functional f : V −→ R,
i.e. µ = ∇f .

Langevin equation (4.1.4) becomes

∆ϕ = ∇f(ϕ)∆τ + η
√
∆τ or ∆ϕx = ∂xf(ϕ)∆τ + ηx

√
∆τ (4.1.6)

where the defining trait is now the functional f , to be known as action in a physics context. (4.1.6) is the template for what
is known as stochastic quantization in field theory [68].

The corresponding Fokker–Planck equation simplifies to

∂

∂τ
ϱ =

1

2
σ2∂x∂xϱ− ∂x(ϱ∂xf) =

1

2
σ2∂x∂xϱ− δxy∂x(ϱ∂yf) =

1

2
σ2∂x∂xϱ− ∂xϱ∂xf − ϱ∂x∂xf,

or
∂

∂τ
ϱ =

1

2
σ2∇2ϱ−∇ · (ϱ∇f) = 1

2
σ2∇2ϱ−∇f · ∇ϱ− ϱ∇2f.

Symmetry fixing

Assume the functional f has a symmetry prescribed by a Lie group G with a corresponding Lie algebra g,5 namely ∀ϕ ∈ V
and ∀g ∈ G, that f remains unchanged if ϕ is replaced by gϕ.

λ ∈ g such that g = exp ıλ, defined the infinitesimal change ∆ϕ = ıλϕ.

Assume G if of finite dimension and has K generators (λa)
K
a=1 ⊂ g, such that ∀g ∈ G, ∃!(ga)Ka=1 ∈ RK such that

g = exp ıgaλa,

giving
∆ϕ = ıgaλaϕ,

thus the symmetry of f under G translates to parametric freedom of ϕ.

A usual approach in fixing (ga)
K
a=1 is by minimizing a squared norm–like function N on ϕ.6 The simplest example

N (ϕ) ∝ ∥ϕ∥2 = ϕ · ϕ,
5See section §1.3. Differential Algebra for a brief reference.
6See definition 1.2.5 and 1.2.6.
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where the inner product of V was used for the default norm on V . The differential of the norm becomes

∆N ∝ ϕ ·∆ϕ = ıϕ · gaλaϕ,

which is nothing but a modified inner product on V .

Symmetry fixing of ϕ leads to a modified discretized Langevin process (and equation),

ϕ′(τ) = g(τ)ϕ(τ) and ϕ(τ +∆τ) = ϕ′(τ) + µ(ϕ′(τ))∆τ + σ(ϕ′(τ))η
√
∆τ .

4.2. Complexification

ϕ scalar

ϕ ∈ R and f : R −→ R

The Langevin equation becomes

∆ϕ =
∂

∂ϕ
f(ϕ)∆τ + η

√
∆τ , (4.2.1)

with the corresponding Fokker–Planck equation

∂

∂τ
ϱ =

1

2
σ2 ∂

2

∂ϕ2
ϱ− ∂

∂ϕ

(︃
ϱ
∂

∂ϕ
f

)︃
=

1

2
σ2 ∂

2

∂ϕ2
ϱ− ∂

∂ϕ
ϱ
∂

∂ϕ
f − ϱ ∂

2

∂ϕ2
f.

ϕ ∈ C and f : C −→ R

This case may seem peculiar but is in fact well–defined, so long as the operator ∇ is properly understood. In the simplest
case of V = C, we get the corresponding Wirtinger derivatives of f : C −→ R, for ϕ ∈ C,

∂

∂ϕ
=

1

2

(︃
∂

∂ℜϕ
− ı ∂

∂ℑϕ

)︃
and

∂

∂ϕ∗
=

1

2

(︃
∂

∂ℜϕ
+ ı

∂

∂ℑϕ

)︃
.

Recall that functionals of the form f : V −→ R are not holomorphic, but in such cases holomorphism is irrelevant. In effect
the process breaks down to two processes, per C ≃ R2. The crucial detail here is that for the variable ϕ ∈ C the corresponding
Wirtinger derivative is the conjugate one.

ϕ ∈ R and f : R −→ C

This may appear as a non–conventional case, it appears however in several applications, where the action f is manifestly
complex. Once again, assume the simplest case V = R, and therefore f = ℜf + ıℑf : R −→ C, i.e. a trajectory in C. ∀ϕ ∈ R

∂

∂ϕ
f =

∂

∂ϕ
ℜf + ı

∂

∂ϕ
ℑf,

which creates an incompatibility in the Langevin equation,

∆ϕ =
∂

∂ϕ
f(ϕ)∆τ + η

√
∆τ

whose consistency requires the complexification of ϕ ∈ R.

The complexification of ϕ ∈ C can happen in many ways, the most straightforward one being to assume an extra imaginary
part as in

ϕ −→ ϕ+ ıψ.
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This replacement affects the definition of the functional f (for scalar ϕ ∈ C it becomes f : C −→ C), which – aside from the
definition of f – affects how f is derivated.

∂

∂ϕ
f =

1

2

(︃
∂

∂ℜϕ
(ℜf + ıℑf)− ı ∂

∂ℑϕ
(ℜf + ıℑf)

)︃
=

1

2

(︃
∂

∂ℜϕ
ℜf +

∂

∂ℑϕ
ℑf
)︃
+ ı

1

2

(︃
∂

∂ℜϕ
ℑf − ∂

∂ℑϕ
ℜf
)︃
,

∂

∂ϕ∗
f =

1

2

(︃
∂

∂ℜϕ
(ℜf + ıℑf) + ı

∂

∂ℑϕ
(ℜf + ıℑf)

)︃
=

1

2

(︃
∂

∂ℜϕ
ℜf − ∂

∂ℑϕ
ℑf
)︃
+ ı

1

2

(︃
∂

∂ℜϕ
ℑf +

∂

∂ℑϕ
ℜf
)︃
.

Example 4.2.1. ∀ϕ ∈ C, f = ϕ,

∂

∂ϕ∗
ϕ =

1

2

(︃
∂

∂ℜϕ∗
ℜϕ− ∂

∂ℑϕ∗
ℑϕ
)︃
+ ı

1

2

(︃
∂

∂ℜϕ∗
ℑϕ+

∂

∂ℑϕ∗
ℜϕ
)︃

=
1

2

(︃
∂

∂ℜϕ∗
ℜϕ∗ + ∂

∂ℑϕ∗
ℑϕ∗

)︃
+ ı

1

2

(︃
∂

∂ℑϕ∗
ℜϕ∗ − ∂

∂ℜϕ∗
ℑϕ∗

)︃
= 1,

or f = ϕ∗,
∂

∂ϕ∗
ϕ∗ =

1

2

(︃
∂

∂ℜϕ∗
ℜϕ∗ − ∂

∂ℑϕ∗
ℑϕ∗

)︃
+ ı

1

2

(︃
∂

∂ℜϕ∗
ℑϕ∗ + ∂

∂ℑϕ∗
ℜϕ∗

)︃
= 0.

ϕ ∈ C and f : C −→ C

Before exploring the general case of a complex Langevin equation, it is important to analyze it with Einstein indexing based
on C ≃ R2.7

∀ϕ ∈ C, ϕ = ϕ0 + ıϕ1,

where by convention, the real part is indexed by 0.

Vector operations on R2 carry over as is on C,

∀x, y ∈ R and ∀ϕ, ψ ∈ C, (xϕ+ yψ)a = xϕa + yψa.

The complex product requires a rank 3 tensor # : C× C −→ C to define,

∀ϕ, ψ ∈ C, (ϕψ)a = #abcϕbψc, # =

(︃
+1

−1

⃓⃓⃓⃓
+1

+1

)︃
.

Multiplication with unities becomes
(1ϕ)a = δabϕb and (ıϕ)a = ϵabϕb,

where ϵ is the anti–symmetric tensor depicting the sign of the permutation of its indices.

Conjugation is defined via a matrix (linear operation) σ : C −→ C,

∀ϕ ∈ C, (ϕ∗)a = σabϕb.

The analog of an inner product  : C× C −→ C in C becomes,

∀ϕ, ψ ∈ C, (ϕ∗ψ)a = #abcσbcϕcψd =  abcϕbψc,  =

(︃
+1

+1

⃓⃓⃓⃓
+1

−1

)︃
.

Note how the fact that |ϕ|2 = ϕ∗ϕ = ϕaϕa, ∀ϕ ∈ C, cannot be expresses in terms of  . This is an important aspect when
examining a fully complex Langevin equation.
7This analysis is contained here and is not to be confused with complex vector and matrix variables to be introduced later.
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The notion of complexification applies to complex numbers as well, in the sense of extending C to C⊗C, which is equivalent
to complexifying the real components of a complex number. With the double complex set C⊗ C, a second imaginary unit ȷ
is introduced, and a third one ıȷ stems from the complex Cartesian product,8

C ∋ ϕ = ϕ0 + ıϕ1 −→ (ϕ00 + ȷϕ01) + ı(ϕ10 + ȷϕ11) = ϕ00 + ȷϕ01 + ıϕ10 + ıȷϕ11 ∈ C× C.

In index notation ϕ assumes an extra free index, as in ϕa −→ ϕab.

Conjugation extends naturally too,

ϕ∗ = ϕ00 − ȷϕ01 − ıϕ10 + ıȷϕ11 or (ϕ∗)ab = σacσbdϕcd,

thus ϕ∗ ∈ C ⊗ C is not the one ϕ∗ ∈ C extends too, which is σacϕcb instead, so care is needed when extending complex
derivatives.

∀f : C −→ C, the complex derivative of f , shorthand–denoted as ∂f is indexed and complexified as

∂a −→ σac∂cb hence (∂f)a = #acd∂cfd −→ #acdσce∂ebfd =  acd∂cbfd = (∂f)ab,

where the correction stems from the disagreement between conjugation in C⊗C and the extension of a conjugate in C. After
complexification, f : C⊗ C −→ C, but ∂f : C⊗ C −→ C⊗ C, because the derivative is affected by the complexification.

Example 4.2.2. Let µ, λ ∈ R and
f : C −→ C : ϕ ↦−→ f(ϕ) = µ|ϕ|2 − ıλ|ϕ|4,

a typical scalar (complex) action functional. As a complex functional it should assume a free index, but the image form it
takes cannot be written in index form using the standard operations.9

The modulus of ϕ becomes
|ϕ|2 = ϕaϕa −→ (ϕaϕa)b = #bcdϕacϕad ∈ C,

and
|ϕ|4 = ϕaϕaϕbϕb −→ (ϕaϕaϕbϕb)c = #cdg#def#ghiϕaeϕafϕbhϕbi,

allowing the indexed expression of f ,

fa = µ#abcϕdbϕdc − λϵab#bcd#ceg#dfhϕieϕigϕjfϕjh.

This internal complex index notation was used here to exhibit the need of complexifying

ϕ vector

The aforementioned concepts generalize straightforwardly to a (finite–dimensional) vector complexification V ≃ RdimX −→ CdimX ,
simply on a component level. The arguments per the derivation, apply to the partial derivatives (components) of the func-
tional f.

8Note that C⊗ C with k = ıȷ is not isomorphic to H, the imaginary units algebra differ,

C⊗ C :

+1 +ı +ȷ +k

+ı −1 +k −ȷ

+ȷ +k −1 −ı

+k −ȷ −ı +1

vs H :

+1 +ı +ȷ +k

+ı −1 +k −ȷ

+ȷ −k −1 +ı

+k +ȷ −ı −1

9More qualitatively, think about being unable to “hide non–symbolically” the imaginary unit representation of the complex µ|ϕ|2− ıλ|ϕ|4 by using
index notation. There is no way to write this as fa(ϕ) = . . ..
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ϕ matrix

L(V ) as an algebra (definition 1.1.6, example 1.1.9), is field–like – the only difference being that the set L(V ) is not a group
under the binary product ◦ – meaning it can be equipped with a conjugation when V ≃ CdimV ,

† : L(V ) −→ L(V ) : ϕ ↦−→ ϕ† with ϕ†|ab = ϕ∗ba,

and the corresponding product,

· : L(V )× L(V ) −→ L(V ) : ϕ, ψ ↦−→ ϕψ = ϕ ◦ ψ with ϕψ|ab = ϕacψcb.

The corresponding real axis of the conjugation is the set of positive–definite hermitian operators ϕ, for which ϕ = ϕ†. Indeed,
∀ψ ∈ L(V ),

(ψ†ψ)† = ψ†ψ†† = ψ†ψ since (ψ∗
cbψca)

∗ = ψ∗
caψcb.

The corresponding conjugate derivative of a functional f : L(V ) −→ C becomes

∂

∂ϕ∗
f

⃓⃓⃓⃓
ab

=
∂

∂ϕ∗ab
f.

∀ϕ ∈ L(V ) hermitian, ϕ† = ϕ or ϕ∗ab = ϕba and
∂

∂ϕ∗
f

⃓⃓⃓⃓
ab

=
∂

∂ϕba
f.

Example 4.2.3. Let f(ϕ) = ∥ϕ∥2 = trϕ†ϕ,

∂

∂ϕ∗
trϕ†ϕ

⃓⃓⃓⃓
ab

=
∂

∂ϕ∗ab
ϕ∗dcϕdc = ϕ∗dc

∂

∂ϕ∗ab
ϕdc = ϕ∗dcδadδbc = ϕ∗ab or

∂

∂ϕ∗
trϕ†ϕ = ϕ†,

or f(ϕ) = (trϕ†ϕ)2,
∂

∂ϕ∗
(trϕ†ϕ)2 = 2 trϕ†ϕ

∂

∂ϕ∗
trϕ†ϕ = 2(trϕ†ϕ)ϕ†,

since trϕ†ϕ ∈ R+, or f(ϕ) = ∥ϕ∥4 = trϕ†ϕϕ†ϕ,

∂

∂ϕ∗
trϕ†ϕϕ†ϕ

⃓⃓⃓⃓
ab

=
∂

∂ϕ∗ab
ϕ∗dcϕdeϕ

∗
feϕfc = ϕ∗dc

∂

∂ϕ∗ab
ϕdeϕ

∗
feϕfc + ϕ∗dcϕdeϕ

∗
fe

∂

∂ϕ∗ab
ϕfc

= ϕ∗dcδadδbeϕ
∗
feϕfc + ϕ∗dcϕdeϕ

∗
feδafδbc = ϕ∗acϕ

∗
fbϕfc + ϕ∗dbϕdeϕ

∗
ae = ϕ†bfϕfcϕ

†
ca + ϕ†bdϕdeϕ

†
ea,

or
∂

∂ϕ∗
trϕ†ϕϕ†ϕ = 2ϕ†ϕϕ†.

The case corresponding to the real process in that of the matrix ϕ being hermitian. In such case ϕ† = ϕ or ϕ∗ = ϕ⊤, so the
corresponding to above derivatives are with respect to ϕ⊤, not ϕ.

4.3. Stochastic Quantization

The stochastic setting for a scalar field theory consists of

• a time index T,

• a field configuration space V with the Borel σ–algebra B(V ) and ℓ : B(V ) −→ R+ the corresponding Lebesgue measure,

• a time–independent drift µ : V −→ V that stems from a time–independent action functional S : V −→ R as µ = −∇S,
and
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4.4. The complex action problem

• a vector Wiener process η : T×Ω −→ V ,

• a consistency noise setting σ =
√
2,

such that ∀ϕ : T×Ω −→ V ,
∆ϕ(τ) = σ∆η(τ)−∇S ◦ ϕ(τ)∆τ , ϕ(0) = ϕ0 : Ω −→ V, (4.3.1)

and a Fokker–Planck equation for its probability transition density ϱ : T× V −→ R+ (with Σ = 1),

∂

∂τ
ϱ = ∇ · (∇ϱ+ ρ∇S) = ∇2ϱ+ ϱ∇2S +∇ϱ · ∇S, ϱ(0) = 1 : V −→ R+ : ϕ ↦−→ δ(ϕ− ϕ0). (4.3.2)

Note that the expectation form of the Langevin equation (4.3.1), with the assumption of time–independence of ϕ yields

⟨∇S ◦ ϕ⟩ = 0,

which basically stands for the (classical) equation of motion for ϕ.

The main argument of stochastic quantization is that the corresponding field theory stems as the stationary limit of a
stochastic process defined by the stochastic differential equation (4.3.1) [68].

Thus, of interest are the stationary solutions of the corresponding deterministic Fokker–Planck equation (4.3.2). If the vector
field ϕ is indexed by x, the stationary Fokker–Planck equation is written as

∂x(∂xϱ+ ϱ∂xS) = ∂x∂xϱ+ ϱ∂x∂xS + ∂xϱ∂xS = 0.

with apparent solution
ϱ∞(ϕ) ∝ exp(−S(ϕ)).

Indeed, ∂xϱ∞ = −ϱ∞∂xS and ∂x∂xϱ∞ = −∂x(ϱ∞∂xS) = ϱ∞∂xS∂xS − ϱ∞∂x∂xS, the stationary part of (4.3.2) becomes,

∂x∂xϱ∞ + ϱ∞∂x∂xS + ∂xϱ∞∂xS = ϱ∞∂xS∂xS − ϱ∞∂x∂xS + ϱ∞∂x∂xS − ϱ∞∂xS∂xS = 0.

Monte Carlo methods for evaluating stochastic integrals ⟨O ◦ Φ⟩ of functionals O : V −→ R, rely on stochastic processes to
generate (realized) Markov chains for efficient sampling of the configuration space for the Monte Carlo calculation.

The stochastic differential equation of O ◦ Φ is

∆(O ◦ ϕ) = ∇O ◦ ϕ ·∆ϕ = ∇O ◦ ϕ · ∇S ◦ ϕ(τ)∆τ + σ∇O ◦ ϕ ·∆W (τ), O ◦ ϕ(0) = O ◦ ϕ0 : Ω −→ V,

which is a more generic stochastic differential equation that still relies on a vector Wiener process, even if O (and thus O ◦Φ)
is scalar. The distribution of functionals of stochastic processes is not a trivial matter, and will not be expanded here [66].
The corresponding evolution equation of the expectation ⟨O ◦ Φ⟩ is [68],

∂

∂τ
⟨O ◦ ϕ⟩ = ∇ · (∇⟨O ◦ ϕ⟩ − ⟨O ◦ ϕ⟩∇S) = ∇2⟨O ◦ ϕ⟩ − ⟨O ◦ ϕ⟩∇2S −∇⟨O ◦ ϕ⟩ · ∇S

= ∇ · (∇⟨O ◦ ϕ⟩ − ⟨O ◦ ϕ⟩µ) = ∇2⟨O ◦ ϕ⟩ − ⟨O ◦ ϕ⟩∇ · µ−∇⟨O ◦ ϕ⟩ · µ, ⟨O ◦ ϕ⟩(0) = ⟨O ◦ ϕ0⟩. (4.3.3)

4.4. The complex action problem

Any time–evolving process (even deterministic) can be simulated by their defining differential equation, provided a corre-
sponding discretization scheme, and stochastic processes are no different.

A simulation of a stochastic process ϕ : Ω×T −→ K, is a sample path for ω ∈ Ω discretized on either N or a discrete stopping
time τ .

Monte Carlo stands for a range of techniques by which expectation values ⟨O ◦ ϕ⟩ of functionals O : V −→ K are estimated
efficiently.10 The calculation relies on obtaining a representative (pseudo)random sample path on the configuration space V .
10Note that O ◦ ϕ : Ω −→ K is in fact evaluated, O simply the formula of the observable set on V . For example

O(x) = x∗x

is a functional on V , but the expectation value that is sought is ⟨O ◦ ϕ⟩ = ⟨ϕ∗ϕ⟩.
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4. Stochastic Quantization

Monte Carlo methods improve the sampling process, by sampling in a way that maximizes contributions to the functional
integral ⟨O ◦ ϕ⟩.

Of note is the fact that a theory or quantity is of interest at equilibrium of ϕ, i.e. at the limit τ → ∞. In practice, there
exists a thermalization time τ0 by which ϕ has practically achieved equilibrium and depends on the speed of (stochastic)
convergence of ϕ, and is usually determined empirically, by examining the time history of the functional O ◦ ϕ.

A customary Monte Carlo method (important sampling) for estimating observables on a (Euclidean) theory with action
functional S : V −→ K relies on generating instances of ϕ with a transition probability that depends on the partition value

Z = ⟨exp(−S ◦ ϕ)⟩

which gives a good probability only for K = R. The logic behind importance sampling is to lead a Markov chain of samples
in to domain of high contribution to observable integrals ⟨O ◦ ϕ⟩ for Said Monte Carlo method does not break if K = C,
however its effect in optimizing the simulation does.

Reweighting and the overlap problem

An obvious solution to the complex action problem would be to split the action functional parts as S = S0 − ıΓ , and make
evaluations on the S0 functional of both the observable functional O and the phase factor exp ıΓ ,

⟨O ◦ ϕ⟩ = ⟨O exp ıΓ ◦ ϕ⟩0
⟨exp ıΓ ⟩0

,

where ⟨·⟩0 is estimated on sample path(s) generated by S0. This approach generates a new overlap problem, by which the
two phase–quenched observables do not become important in the same domain of V .

The Complex Langevin method

The Langevin process (4.3.1) is defined for complex S provided Φ is complexified accordingly, i.e. the domain C for random
variables defined on V becomes C× C if necessary, altering the definitions of S and all functionals O. Generally speaking ϕ
assumes an analytic continuation. This process has a well defined Fokker–Planck equation, and thus probability, therefore
it is conjectured that it generates sample paths compatible with Monte Carlo simulations. Keeping the corresponding
Wiener process η “uncomplexified”, under some special assumptions, ⟨ℑO ◦ϕ⟩ = 0, making the complexified Langevin process
compatible with the original functionals. A slightly more generic treatment with a complex noise can be found in [35, 36].

To skip the cumbersome index notation of section §4.2. Complexification, hereon complexified objects will be denoted with
an overline. Also random variables will be lower–cased as if they are realized (even if they are not).11 The first object that
requires explicit definition is the complexified vector space V over C, assuming V is a vector space over R, in which vector
representations are allowed to have values from the new field.

A compact form of the (real) Langevin equation with drift −∇S and stationary noise η,

∆ϕ = ∆η −∇S ◦ ϕ∆τ , ϕ(0) = ϕ0 ∈ V, (4.4.1)

and the corresponding Fokker–Planck Hamiltonian operator

A = ∇ · ∇ −∇S · ∇

which has 0 as a non–degenerate eigenvalue and non–negative spectrum overall, implying stability of the stationary Fokker–
Planck solution

ϱ∞ ◦ ϕ ∝ exp(−S ◦ ϕ),

where ∇ℜ is the derivative with respect to a/the real ϕ.12

11See section §4.1. Assumptions for details on the assumption of realized stochastic processes in context of numerical calculations.
12Upon complexification of ϕ, this real ϕ becomes ℜϕ.
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4.4. The complex action problem

If the action functional is complex, the minimal edit to the Langevin equation is to complexify ϕ, which will in turn edit S
as well, however the derivative operator ∇ℜ with respect now to ϕ = ℜϕ remains as is in the definition of A. This minimal
edit allows leaving the Wiener process η real, leading to the complex Langevin equation

∆ϕ = ∆η −∇S ◦ ϕ∆τ,

which can be decomposed as a pair of real Langevin equations,13

∆ℜϕ = ∆η −ℜ∇S ◦ ϕ∆τ

∆ℑϕ = −ℑ∇S ◦ ϕ∆τ
,

which in turn has a real corresponding Fokker–Planck Hamiltonian

ℜA = ∇ · ∇ − ℜ∇S · ∇

ℑA = ∇ · ∇ − ℑ∇S · ∇
.

S : V −→ C is the analytic continuation of the action S, i.e. the complete form it takes after complexification of ϕ. The
corresponding Fokker–Planck probability density ϱ : T× V −→ R+ is a distribution over the complexified V .

Recall from section §4.2. Complexification that,

∇ =
1

2
(∇ℜ − ı∇ℑ), ∇ℜ = ∇,

allowing the definition of a “complexified” Hamiltonian,

A = ∇ · ∇ −∇S · ∇,

Applied on holomorphic observable functionals O, by the Cauchy–Riemann equations, ∇ℑ = ı∇ℜ, implying ∇ = ∇ℜ and in
turn, A = A. Henceforth thus, observables will be assumed to be holomorphic functions of ϕ.

Correspondingly, let ϱ : T× V −→ C be a complex distribution that satisfies

∂

∂τ
ϱ = ∇ · ∇ϱ+∇ · (ϱ∇S),

in contrast to the proper Fokker–Planck density ϱ satisfying

∂

∂τ
ϱ = ∇ · ∇ϱ+∇ · (ϱ∇S). (4.4.2)

The main conjecture of the complex Langevin method is that ∀O : V −→ R observable functional with O : V −→ C analytic
continuation and ∀τ ∈ T,

⟨O ◦ ϕ⟩ϱ(τ) = ⟨O ◦ ϕ⟩ϱ(τ) given ⟨O ◦ ϕ⟩ϱ(0) = ⟨O ◦ ϕ⟩ϱ(0), (4.4.3)

and ∃!ϱ(∞) = limτ→∞ ϱ(τ),14 such that
limτ→∞⟨O ◦ ϕ⟩ϱ(τ) = ⟨O ◦ ϕ⟩ϱ(∞). (4.4.4)

What the first complex Langevin method conjecture (4.4.3) states in words is that the complex “probability” measure defined
by the complex action functional of the corresponding theory is “equivalent” to the proper (Fokker–Planck) probability
measure implied by its (complex) Langevin formulation. The correspondence is:

original (complex) theory −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (complex) Langevin formulation

complex probability ϱ : T× V −→ C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ proper probability ϱ : T× V −→ R+

original O realized on original ϕ as O ◦ ϕ −−−−−−−−−−−−−−−−−−−−−−−→ holomorphic O realized on complexified ϕ as O ◦ ϕ
What the second complex Langevin conjecture (4.4.4) states in words is that the (complex) spectrum (definition 1.2.14) of
the corresponding Fokker–Planck Hamiltonian A⊤ (which applies to the complex ϱ), lies in the positive real half of C, i.e.
∀α ∈ C eigenvalue of A⊤, ℜα ≥ 0 [35, 36]. The defining element of A is the process drift −∇S.
13It may appear that only one of them is stochastic, but in fact the equations are coupled so the system is stochastic.
14Notably such that ϱ(∞) ◦ ϕ = exp(−S ◦ ϕ).
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4. Stochastic Quantization

Complex action functional decomposition and requirements

A partition function more generally (assuming the real case)

Z : (V −→ R) −→ R : S ↦−→ Z(S) = ⟨exp(−S ◦ ϕ)⟩

maps an action functional S : V −→ R to an integral over the entire configuration space that is used to evaluate expectation
values of observables. Even when the action functional is real, it must also be positive definite for the partition integral to
converge, i.e. ∀ϕ ∈ V , S(ϕ) ≥ 0.

In case of a complex (and/or complexified) action functional S, the condition becomes ∀ϕ ∈ V , ℜS(ϕ) ≥ 0, as

⟨exp(−S ◦ ϕ)⟩ = ⟨exp(−ℜS ◦ ϕ) exp(−ıℑS ◦ ϕ)⟩,

where exp(−ℜS(ϕ)) decides the convergence of the partition integral, as the imaginary phase is periodic.

A complex action functional can be expressed in two ways,

S = ℜS + ıℑS = |S| exp ı argS = |S| cos argS + ı|S| sin argS. (4.4.5)

In the latter case, it is often convenient to explore ℜ exp ı argS = cos argS instead.
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IKKT matrix model

63





5. Field theory

The approach to string theory in this text is to ascend from the fundamental tools in building quantum field theories rather
than a physics–oriented approach.

Before proceeding to the main material some conventions need to be established.

Einstein indexing

In index notation, a tensor field ϕ has as many free indices as its rank. For example:

• a scalar ϕ

• a vector ϕa
• a matrix ϕab
• a tensor of rank n, ϕa1...an

Euclidean versus Lorentzian metric signature

For a real finite–dimensional vector space X with an inner product

· : X × X −→ R : x, y ↦−→ x · y = xaya = δabxayb,

the positive definite symmetric (hermitian for complex) defining matrix 1 is implied in the contraction. ∀A such matrix
defines a new Euclidean inner product,

·A : X × X −→ R : x, y ↦−→ x ·A y = x ·A · y = Aabxayb.

Such matrices belong to the general linear group GLdimX (R) of invertible (diagonalizable matrices), so there exists a base
on which A is diagonal. As positive–definite, all eigenvalues of A are positive.

The positive–definiteness of A is required by the triangular inequality condition of the metric the corresponding inner product
induces on X . If that condition is dropped, A is allowed to have negative eigenvalues as well. The most popular (diagonalized)
non–positive–definite metric is the Lorentzian one defined by ηij = δij , ∀i, j>0 and η00 = −1, or

η =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 · · ·

+1 · · ·
...

...
. . .

...

· · · +1

⎞⎟⎟⎟⎟⎟⎟⎠ versus 1 =

⎛⎜⎜⎜⎜⎜⎜⎝
+1 · · ·

+1 · · ·
...

...
. . .

...

· · · +1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Even in real vector spaces, a non–trivial metric implies a conjugation involution in the sense

x† = A · x = x ·A,

which offers an alternative encoding of a custom metric as a conjugation using the trivial inner product defined by 1. In
index notation, such a conjugate is usually represented by an upper index instead of a lower one, with the defining matrix
implied.

∀x ∈ X with Lorentzian metric g,
xa = ηabxb or xa = ηabx

b and xaxa = ηabx
axb

Qualitatively speaking, the role of g is to raise or lower indices, and contraction is no longer represented by plain pairs of
repeating indices, the pair has to be one of upper and lower index. This effect extends straightforwardly to tensors as well.
Also by convention, the standard vector components are henceforth indexed above.

By convention indexing in Euclidean signature ranges from 1 to dimX while in Lorentzian signature from 0 to dimX − 1.
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5. Field theory

Wick rotation

A point of interest is that one can connect the Euclidean inner–product and the Lorentzian one via the correspondence

x0 = ıxdimX or xdimX = ıx0,

due to ı2 = −1, called a Wick rotation or else analytic continuation, as the multiplicative role of ı = exp(ıπ/2) in C is to
rotate by π/2 counter–clockwise. Wick rotation is a mechanism to translate a theory with Lorentzian metric signature to
one with Euclidean signature or vice–versa.

5.1. Classical Field Theory

Lagrangian

The first and most fundamental asset in quantum field theory is classical field theory. The key elements of a field theory are:

• A background space X , which can be any of:

◦ a (real finite–dimensional) vector space,

◦ any of its local variants, like (most generally) a manifold.

• A degrees of freedom target space F, which can be any of:

◦ an algebraic field K,

◦ a K–vector space,

◦ a K–tensor space ⨂︂
F =

⨂︂
F∈F

F,

over a collection F of K–vector spaces,1

• A symmetry Lie group G with a corresponding Lie algebra, usually

◦ a rotation group, like SOdim FK or its Poincare–equivalent, characteristic of bosons

◦ a spin group (that is not an aforementioned rotation group), characteristic of fermions,

• A resulting configuration space FX , which is:

◦ a tensor space if X is a vector space,

◦ a tensor bundle if X is a manifold.

• A Lagrangian function,
L : FX −→ KX : ϕ ↦−→ L ◦ ϕ.

• An action functional (X–integral of Lagrangian),2

S : FX −→ K : ϕ ↦−→ ⟨L ◦ ϕ⟩X =

∫︂
X
L ◦ ϕ(x)dx.

L ◦ ϕ will be often abbreviated by L when an explicit formula on ϕ is given on it, hence there is no confusion. Technically
speaking the Lagrangian also depends on ∇ϕ which has been omitted above for clarity.

Integration in X stems from the Lebesgue measure on B(X ), which is always defined, as both vector spaces and manifolds
assume a topology. The bra–ket notation will be used throughout with the corresponding integration space understood from
the content of the bra–ket or the context.
1It is understood that rank 0 tensors are scalars in K and rank 1 tensors are vectors in F .
2Indexing over X is done with functional notation, i.e. ∀x ∈ X and ∀ϕ ∈ FX , ϕ(x) ∈ F.
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5.1. Classical Field Theory

Euler–Lagrange equations

The equations of motion for a particular field theory stems from the principle of least action.

δS =

⟨︃
∂

∂ϕ
Lδϕ+

∂

∂∂aϕ
L∂aδϕ

⟩︃
X

=

⟨︃
∂

∂ϕ
Lδϕ+ ∂a

(︃
∂

∂∂aϕ
Lδϕ

)︃
− ∂a

∂

∂∂aϕ
Lδϕ

⟩︃
X

=

⟨︃(︃
∂

∂ϕ
L − ∂a

∂

∂∂aϕ
L
)︃
δϕ

⟩︃
X
,

where the total derivative term ⟨︃
∂a

(︃
∂

∂∂aϕ(x)
Lδϕ(x)

)︃⟩︃
X

= 0

was dropped as dependent on the boundary of integration ∂X , which is zero as said boundary lies at infinity and all functionals
are implied square–integrable on X , meaning the fall–off fast enough at infinity, and thus definitely 0 on ∂X .

The least action principle δS = 0, ∀∆ϕ ∈ FX , yields the Euler–Lagrange equations (of motion) of the theory

∂

∂ϕ
L = ∂a

∂

∂∂aϕ
L

Noether’s theorem

A Lagrangian L may be invariant under transformations/operators that act on vectors in FX . Such symmetries are closed
under composition, 1 is a symmetry for any Lagrangian, and for every symmetry, the inverse operator is also a symmetry.
Therefore the set of symmetries of a Lagrangian forms a group. If said group is also a smooth manifold, it is a Lie group.3

The symmetries of the Lagrangian pass on to the corresponding action functional. However, the action functional is addi-
tionally immune to total derivatives (divergences), ∀α ∈ K,

δL = α∂aΛ
a

of the Lagrangian due to the diminishing boundary conditions in the integral.

Theorem 5.1.1 (Noether’s). ∀G symmetry Lie group of an action functional S, such that ∀A ∈ G with ϕ −→ exp(ıA) · ϕ
or equivalently (infinitesimally) ∀A ∈ g (the tangent to G Lie algebra) with δϕ = ıA · ϕ and ∃Λ vector field such that for a
Lagrangian corresponding to action S,

δL = ∂aΛ
a,

∃J vector field (Noether current) such that

Ja =
∂L
∂∂aϕ

·A · ϕ− Λa,

which is conserved, ∂aJa = 0 on shell (the subspace of FX satisfying the equations of motion of L).

Noether’s theorem holds for local (gauge) symmetries too [69], which assume the form ∀x ∈ X ,

δϕ(x) = ıA(x) · ϕ(x),

meaning that symmetries are now part of orbits of X in G.

Currents stemming from (gauge) symmetries of the action are not the only ones that can appear in a Lagrangian. Their
presence can be manifest as interacting with the fields terms, putting the free theory off shell.

3See section §1.3. Differential Algebra for details on matrix Lie groups and corresponding algebras.
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5. Field theory

The energy–momentum tensor

The spacetime translations are a special set of symmetries that all action functionals satisfy and are infinitesimally modeled
by a set of Killing vectors ξ as

δϕ = ξa∂aϕ.

Since this is a vector of symmetries, the corresponding Noether current (energy–momentum tensor assumes another free
index,4

T a
b =

∂L
∂∂aϕ

· ∂bϕ+ δabL,

where the dot product is meant with respect to F, where as the contraction of indices is meant wit respect to X . On shell
∂aT

ab = 0b.

Spinor fields are such that X is a Grassman algebra instead of a (in a sense classical) scalar/vector/tensor space.

Wick rotation

Wick rotation is a special case of analytic continuation of a field theory on complex spacetime. The transformation itself
replaces the time coordinate x0 with a coordinate

xdimX = ıx0,

which transforms bilinear contractions with Lorentzian signature into ones with euclidean (positive definite) one, namely
∀x ∈ X , ∑︂dimX

a=1

∑︂dimX

b=1
δabxaxb =

∑︂dimX−1

a=0

∑︂dimX−1

b=0
ηabx

axb.

With a euclidean metric signature, index leveling becomes obsolete, and by convention, lower indices are used.

5.2. Quantum Field Theory

The path integral

The path integral represent a measure–theoretic approach to second quantization [67, 68].5 The configuration space FX as
a vector space is infinite–dimensional and concerns about a possible Lebesgue measure leave the definition of the Feynman
path integral formal,

⟨. . .⟩FX =

∫︂
. . .Dϕ,

where here the bracket is understood as integrating on FX , defining the Lebesgue measure on B(FX ), but it becomes possible
on the lattice–regularized theory (finitely discretized X ).

A much as the action functional S : FX −→ K is characteristic of a classical field theory, by extension, the generating
functional, also labeled the partition function,

Z : FX −→ K : J ↦−→ ⟨exp(ıS + ı⟨Jϕ⟩X )⟩FX . (5.2.1)

J = 0 corresponds to the free theory.

4Note that
δab = ηacηcb,

so g appears in the definition of a similar–index energy–momentum Tab.
5Similarly to stochastic quantization, they are compatible.
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5.2. Quantum Field Theory

Connection with stochastic quantization

The generating functional is the characteristic understood in probability theory (lemma 2.1.13), and as such it generates the
probability law of the theory

ρ =
exp ıSlorentzian

⟨exp ıSlorentzian⟩FX
,

and all expectations of (observable) functions O : FX −→ K,

⟨O⟩FX =
⟨O exp ıSlorentzian⟩FX

⟨exp ıSlorentzian⟩FX
.

This is formal apparently, as the imaginary unit in the Boltzmann factor exp ıSlorentzian invalidates any proper definition of
a probability with it.6

Wick–rotating X as in xdimX = ıx0, leads to the so–called Euclidean version Seuclidean of a theory with a positive definite
and diminishing entropic factor exp(−Seuclidean). The connection of stochastic quantization to that of path integration is one
tying a stochastic process to the probability law generating path integral (5.2.1) defines.

The conjecture of the complex stochastic quantization is that, as a valid stochastic process it admits a probability law anyway,
even if the corresponding theory has a probabilistically ill–defined generating path integral Z. Setting up such a stochastic
process is not trivial, complexification may be necessary, which in turn complexifies observables.7

Examples

In what follows, a 4–dimensional spacetime X is assumed, i.e. dimX = 4

A massive scalar theory F = C with Higgs potential

A massive scalar field theory in a Higgs potential sports the Lagrangian

L = ηµν∂µϕ
∗∂νϕ−m2ϕ∗ϕ− λ(ϕ∗ϕ)2,

with equation of motion
□ϕ−m2ϕ− λ|ϕ|2ϕ = 0, □ = ηµν∂µ∂ν .

This theory has U1C symmetry group. Indeed, ∀a ∈ R, substituting ϕ→ ϕ exp ıa in the Lagrangian leaves it invariant.

A massless boson (vector) theory F = RdimX

A typical massless vector field Lagrangian is that of photons

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ,

where Jµ is an external current (source), with equations of motion

∂µF
µν = 0,

and U1C symmetry. This is a special case of a Yang–Mills theory.

6It is for this reason, the Lorentzian signature of the theory is stressed here.
7See section §4.2. Complexification for a technical presentation of the concept.
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A massless boson (vector) theory with fermions (Weyl spinors) F = RdimX

The vector Lagrangian becomes

−L =
1

4
FµνF

µν + ıαψγµDµψ, Dµ = ∂µ − ıαAµ,

where γ are generators of a Clifford algebra, satisfying

{γµ|γν} = 2γ(µ ◦ γν) = 2ηµν ,

leading to the equations of motion
∂µF

µν + αψγνψ = 0,

with α > 0 being a coupling constant between ψ or ψ and A.

Yang–Mills theories

Bosonic

A (purely) bosonic classical generic Yang–Mills Lagrangian has the form

L =
1

4
trX (Fa · Fa), Faµν = ∂µAaν − ∂νAaµ + αfabcAbµAcν (5.2.2)

with a (generally non–Abelian) gauge symmetry group G with a corresponding algebra g,8 whose generators λ satisfy
∀a ∈ Ndim g,

trg(λaλb) =
1

2
δab and λa ◦ λb = [λa|λb] = 2λ[aλb] = ıfabcλc,

f being the structure constants characteristic to the algebra g.9

The field strength in general is defined via the commutator of the covariant derivative (Aµ = λaAaµ)

Dµ = ∂µ − ıαAµ, Aµ = λaAaµ,

as (Fµν = λaFaµν),

Fµν = 2ıα−1D[µDν] = ıα−1[Dµ|Dν ] = ıα−1[∂µ − ıαAµ|∂ν − ıαAν ] = ıα−1([∂µ|∂ν ]− ıα[∂µ|Aν ]− ıα[Aµ|∂ν ]− α2[Aµ|Aν ])

2ıα−1(∂[µ∂ν] − ıα∂[µAν] − ıαA[µ∂ν] − α2A[µAν]) = ∂µAν − ∂νAµ − ıα[Aµ|Aν ],

where ∂µ∂ν − ∂ν∂µ = 0 and
Aµ∂ν −Aν∂µ = λaAaµ∂ν − λaAaν∂µ = 0,

as total derivative terms. Expanding on g–components,

λaFaµν = ∂µλaAaν − ∂νλaAaµ − ıα[λbAbµ|λcAcν ] = λa∂µAaν − λa∂νAaµ − ıα[λb|λc]AbµAcν

= ∂µλaAaν − ∂νλaAaµ + αλafabcAbµAcν .

Note that the non–commutativity of A in Yang–Mills theories stems from the non–commutativity of its gauge group G (and
corresponding algebra g), i.e. from the internal degrees of freedom of A.

The commutator Jacobi identity becomes a Bianchi identity, as

[Dρ|[Dµ|Dν ]] + [Dν |[Dρ|Dµ]] + [Dµ|[Dν |Dρ]] = 6D[ρDνDµ] = 6D[ρFµν] = 2(DρFµν +DνFρµ +DµFνρ) = 0,

The equation of motion of A in a Yang–Mills Lagrangian (5.2.2),

DµFµν = 0 or DµFaµν = ∂µFaµν + αfabcA
µ

b Fcµν = 0. (5.2.3)
8See section §1.3. Differential Algebra for some details.
9Note how each trace has a subscript indicating the space tracing is happening. For example, ∀X ∈ X , trX X = ηµνXµν .
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Bosonic with fermions

Editing (5.2.2) to include fermions,

L =
1

4
trX (Fa · Fa) +

1

2
ıα trU (ψaγ ·Dψa), Dµ = ∂µ − ıαλaAaµ (5.2.4)

where U is the vector space on Grassman numbers the fermion field reside.

The equation of motion (5.2.3) acquires a source current,

DµFµν + αψγνψ = λaD
µFaµν + αψaγνψa = 0.

N = 1 super Yang–Mills theories

N = 1 super Yang–Mills theories have a similar form to (5.2.4). In super Yang–Mills theories, the covariant derivative is
defined as

Dµ· = ∂µ ·+ıα[Aµ|·].

The supersymmetries of a super Yang–Mills theory are

δϵAµ = ϵγµψ and δϵψ = −1

2
F · γϵ, γµν = γ[µγν].

Of interest are the zero–volume super Yang–Mills theories. By taking dimX = 0, all spacetime derivatives vanish, yielding

Fµν = −ıα[Aµ|Aν ] and Dµ· = ıα[Aµ|·].

Substituting in (5.2.4),

L =
1

4
trX (F · F )− 1

2
ıα trU (ψγ ·Dψ) = −α2

(︃
1

4
trX ([A|A] · [A|A]) + 1

2
trU (ψγ · [A|ψ])

)︃
. (5.2.5)
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6. String theory

String theories rose out of the necessity for incorporating the gravitational interaction into a unified framework enticing the
Standard model. The dynamic geometric nature of the classical general relativity theory of gravity, in which matter and the
spacetime background affect each other dynamically, makes it impossible to directly produce a renormalizable quantum field
variant. String theories offer not only a way to quantize gravity, but to incorporate the Standard Model with it into a unified
framework for describing all fundamental aspects of the universe as observed to this day [2, 4].

6.1. The bosonic string

Assuming a fixed for now background spacetime X and a metric g with Lorentzian signature (−+ . . .+), the life cycle of a
single (point) particle is represented by a monoparametric (world) line

X : T −→ X : τ ↦−→ X(τ).

The world line of a particle is expected to be at least continuous, and world line intersections represent particle interaction
events.

Even if it describes events, the parameter τ of a world line can be thought of as an internal time. String theory assumes a
second “modal” parameter σ, as in

X : T ×Σ −→ X : τ, σ ↦−→ X(τ, σ),

a degree of freedom whose modes of “vibration” serve for particle type distinction. The added advantage is that world lines
now become world sheets, and interactions are no longer singular events in space time, but topological properties of the world
sheets involved [2].

Strings belong to a more general category of p–dimensional p–branes, embedded in a spacetime X , ∀p ∈ NdimX , such that
p = 0 corresponds to particles and p = 1 corresponds to strings,

X : T ×
∏︂

i
Σ −→ X : (σi)i ↦−→ X(σ),

where T ×
∏︁

iΣ is a (p+ 1)–dimensional parametric vector space.

The string action

0–branes

The motion of a free point particle (p = 0) in a curved spacetime X , is along geodesics (straight lines for a curved spacetime),
therefore the action is proportional to the invariant worldling length,

S0 = −m0

∫︂
dµ0,

where
dµ0 =

√︂
−gµν(X)dXµdXνdτ =

√︁
−∥dX∥2dτ = ı∥dX∥dτ

and m0 a mass scale in inverse length units (c = ℏ = 1). This action is linked to a mass scale that cannot be zero, therefore
an equivalent action with an auxiliary field h is used to describe massless point particles as well,

S0 ∝ ⟨h−1∥X∥2 −m2
0h⟩T , (6.1.1)
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6. String theory

which is also easier to quantize.

This action is equivalent to the invariant length action. The equation of motion of h

−δS
δh

= h−2∥X∥2 +m0 = 0

yields h = ım−1
0 ∥X∥. Replacing the solution for h in the action (6.1.1), yield the original invariant length action.

p–branes

This process generalizes to the p–brane action

Sp = −mp

∫︂
dµp,

with the inverse length mass scale replaced by the p–brane inverse volume tension mp, and the (p+ 1)–dimensional p–brane
hyper–volume

dµp =
√
−detGdp+1σ,

where the induced metric on (p+ 1)–dimensional T ×Σ is

Gαβ = gµν(X)∂αX
µ∂βX

ν ,

where p = dimΣ.

Sp extremizes the (p+1)–dimensional world hyper–volume, in the same sense that S0 extremizes the length of its world line.

The string action in flat spacetime

In the case of a flat spacetime X , the induced metric becomes,

Gαβ = ηµν∂αX
µ∂βX

ν = ∂αX · ∂βX,

where · stands for the Lorentzian–signature inner product defined by η.1

For strings (p = 1), it becomes

detG = ∥∂0X∥2∥∂1X∥2 − |∂0X · ∂1X|2 = (∂0X · ∂0X)(∂1X · ∂1X)− (∂0X · ∂1X)(∂1X · ∂0X)

leading to the Nambu–Goto action
S1 = −m1⟨

√
−detG⟩T×Σ ,

which extremizes the area of the world sheet that a propagating string generates in spacetime X .

The string tension m1 defines a natural string length scale as

ℓ1 =
1

√
πm1

. (6.1.2)

The string sigma model action

The sigma model action is

S1 = −1

2
m1⟨
√
−dethhαβGαβ⟩T×Σ = −1

2
m1⟨
√
− dethhαβ∂αX · ∂βX⟩T×Σ , (6.1.3)

where h is an auxiliary metric on the world sheet Σ with measure–theoretic volume
√
− deth with

δ deth = −dethhαβδh
αβ or δ

√
−deth = −1

2

√
−dethhαβδh

αβ , (6.1.4)

1Recall that a Lorentzian–signature metric breaks the positive definiteness of a metric, induced norm and in–turn induced inner product. See
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6.1. The bosonic string

which action is classically equivalent to the Nambu–Goto action. The equation of motion for the auxiliary metric h stems
from the variation of the action δSp(σ) with respect to δh, also encoded in the vanishing of the respective energy–momentum
tensor T , with

Tαβ = − 2

m1

√
−deth

δSp

δhαβ
= 0,

which, together with (6.1.4), gives

Tαβ = Gαβ −
1

2
hαβh

γδGγδ = 0, (6.1.5)

which equates the auxiliary metric h to the world sheet induced metric G.

The corresponding equation of motion in non–index form (let trG = hαβGαβ) is

G =
1

2
h trG leading to detG =

1

2
det(h trG) =

1

2
deth(trG)2.

For strings (p = 1),2

detG =
1

2
deth(trG)2 or

√
−detG =

1

2

√
−deth trG or

√
−detG =

1

2

√
−dethhαβGαβ , (6.1.6)

which proves the equivalence of the string sigma model action to the Nambu–Goto action for strings (p = 1).

The string sigma model action has three distinct symmetries:

Poincaré symmetry: Lorentz infinitesimal rotations and spacetime translations Xµ −→ aµνX
ν + bµ, with the auxiliary

world metric satisfying δhαβ = 0, as the world sheet maintains its geometry with Lorentz transformations a and
spacetime translations b.

Diffeomorphism invariance: σα −→ fα(σ) with hαβ(σ) = ∂αf
γ∂βf

δhγδ(f(σ)),

Weyl invariance: hαβ −→ exp(−ϕ(τ, σ))hαβ and δXµ = 0.

Diffeomorphism and Weyl invariance are local transformations, which allow a gauge selection on the auxiliary metric field.
For p = 1, h has 4 components,

h =

(︄
h00 h01

h10 h11

)︄
,

but is symmetric (h01 = h10), therefore it has 3 independent components, 2 of which are fixed by reparametrization (diffeo-
morphism) invariance gauge selection and one by scale (Weyl) invariance; the flat metric can thus be chosen,

h = η =

(︄
−1

+1

)︄
,

resulting in a simpler string sigma model action,

S1 ∝ −⟨ηαβηµν∂αXµ∂βX
ν⟩T×Σ = ⟨∂0X · ∂0X − ∂1X · ∂1X⟩T×Σ . (6.1.7)

Gauge fixing the auxiliary world sheet metric h to the flat metric η requires that the worlds sheet topology actually allows
such a metric.3 It is worth noting that this is not a complete gauge fixing, in the sense that there exist reparametrizations
that are also Weyl rescalings, satisfying

∂(αξβ) = Ληαβ ,

where ξ is a parameter vector for infinitesimal parametrizations and Λ a corresponding infinitesimal Weyl rescaling parameter
[2].

Strings can topologically be classified as either closed or (finitely) open. All world sheets topologies:

• of a closed propagating string are homeomorphic to an infinite cylinder (figure 6.1.1)

• of an open propagating string are homeomorphic to an infinite strip (figure 6.1.1)
2trG = hαβGαβ ≥ 0?
3The world sheet as a manifold may have a metric defined in an atlas covering it. Assuming a global flat metric means the topology of the

manifold has a single chart atlas, i.e. be diffeomophic to a Euclidean space.
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X 2

X
1

X
0

closed string

open string

Figure 6.1.1.: The world sheets of a closed (homeomorphic to a cylinder) and an open (homeomorphic to a strip) string
respectively.
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6.1. The bosonic string

The string equations of motion

Extremizing the string sigma model action leads to a wave equation of motion,

□X = 0, □ = ηαβ∂α∂β , (6.1.8)

which holds for arbitrary world–sheet dimension p+ 1.

By eliminating the equation of motion of the auxiliary metric by gauge fixing it, the vanishing of its corresponded energy–
momentum tensor (6.1.5) becomes a (manual) constraint,

Tαβ = Gαβ −
1

2
ηαβη

γδGγδ = Gαβ −
1

2
ηαβ trG,

which implies the vanishing of its trace, trT = ηαβTαβ = 0 [2].

Assuming, without loss of generality, that σ ∈ [0, π] is finite, variation of the string sigma model action yields the boundary
term

∂S1 ∝ −⟨∂0X · δXµ|σ=π − ∂0X · δX|σ=0⟩T
the vanishing of which defines the string topology, classified as:

closed strings: Xµ(τ, σ) = Xµ(τ, σ + π) (periodic boundary conditions)

open strings:

with Neumann boundary conditions: ∂0Xµ(τ, 0) = ∂0X
µ(τ, π) = 0, which respects dimX–Poincaré invariance,

with Dirichlet boundary conditions: ∀µ < dimX−p with µ ̸= 0, Xµ(τ, 0) = Xµ
0 andXµ(τ, π) = Xµ

π and Neumann
boundary conditions for ∀µ ≥ dimX − p and µ = 0, which breaks dimX–Poincaré invariance. The modern
interpretation of Dirichlet open string boundary condition embeddings are as Dp–branes (“D” for “Dirichlet”),
which, if space filling (p+ 1 = dimX ), respect Poincaré–invariance [2].

Classical solutions

Reparametrizing to lightcone world sheet coordinates,

σ± = τ ± σ with ∂± =
1

2
(∂0 ± ∂1) and η =

(︄
η++ η+−

η−+ η−−

)︄
= −1

2

(︄
1

1

)︄
,

the equation of motion (6.1.8) becomes (suppressing free indices)

□X = 0, □ = ∂+∂−, (6.1.9)

while the energy–momentum tensor becomes

T =

(︄
T++ T+−

T−+ T−−

)︄
=

(︄
∂+X · ∂+X

∂−X · ∂−X

)︄
,

where the vanishing of the off–diagonal elements is tautological from the tracelessness identity for a flat world sheet metric
η.

The general solution of the equations of motion can then be expressed are left–propagating X+ and right–propagating X−

on σ strings as
X(σ, τ) = X−(σ−) +X+(σ+). (6.1.10)

The vanishing of the energy–momentum tensor as part of the world sheet metric equation of motion implies

∂−X
− · ∂−X− = 0 and ∂+X+ · ∂+X+ = 0.
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The general solution of (6.1.9) for the open string (with Neumann boundary conditions)

X(τ, σ) = x+ ℓ1α0τ + ıℓ1
∑︂

m∈Z∗
m−1αm exp(−ımτ) cos(mσ), α0 = ℓ1p, (6.1.11)

where x denotes the center of mass of the string and p its free momentum. The closed string allows for propagating wave
modes, while the modes of the open string are stationary.

In what follows, we will refer to the open string only, for keeping the presentation brief. For the closed string similar results
hold with double the algebra, and level matching, further details can be found in [2].

The requirement that the solution is real, yields α−n = α∗
n.

Quantization

The non–zero Poisson brackets of X with its canonical momentum P = m1∂0X,

[Pµ(τ, σ)|Xµ(τ, σ′)]poisson = ηµνδ(σ − σ′),

can be used to quantize the string by replacing Poisson brackets with commutators [·|·]→ ı[·|·] and the solution (6.1.11),

[αµ
m|αν

n] = mηµνδm+n|0.

The Hamiltonian stemming from the Lagrangian L1 of the string sigma model action (6.1.7) (hence forth denoted S1 simply)
becomes

H = L0 = ⟨∂0X · P − L1⟩Σ =
1

2
m1⟨∂0X · ∂0X + ∂1X · ∂1X⟩Σ =

1

2

∑︂
n∈Z

α−n · αn,

where ∀m ∈ Z,

Lm =
1

2

∑︂
n∈Z

αm−n · αn (6.1.12)

are the Virasoro generators appearing in the mode expansion of the energy–momentum tensor. The first derivatives of the
string embedding are

∂±X =
1

2
(∂0X ± ∂1X) =

1

2
ℓ1
∑︂

m∈Z
αm exp(−ımσ±)

yielding,4

T±± = ∂±X · ∂±X =
1

2
ℓ21
∑︂

m∈Z
Lm exp(−ımσ±)

The Virasoro algebra

The classical Virasoro algebra generators, with the quantum commutator notation satisfy ∀m,n ∈ Z,

[Lm|Ln] = (m− n)Lm+n.

However the quantized Virasoro algebra generators shall have normal ordering, which is relevant only for

L0 =
1

2

∑︂
n∈Z

: α−n · αn :=
1

2
α2
0 +

∑︂
n∈N

α−n · αn,

4The square of partial sums of a sequence α : N −→ R, ∑︂
n∈N

αn,

becomes ∑︂
m∈N

∑︂
n∈N

αm · αn =
∑︂

m∈N

∑︂m

n=0
αm−n · αn.

This formula extended over Z has unbounded inner sums,∑︂
m∈Z

∑︂
n∈Z

αm · αn =
∑︂

m∈Z

∑︂
n∈Z

αm−n · αn,

which roughly translates to summing diagonal slices over the infinite Z grid instead of horizontal/vertical.
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6.1. The bosonic string

as it is the only generator containing matching conjugate pairs of α modes, which in turn extends the classical Virasoro
algebra as

[Lm|Ln] = (m− n)Lm+n +
1

12
dimXm(m2 − 1)δm+n|0 − aδm0,

where a is a constant stemming from the normal ordering arbitrariness of L0 [2]. The central extension term added to the
classic Virasoro algebra stands for a conformal anomaly.

Closed strings

The extraction of the Virasoro algebra was done on open strings (stationary solutions) for the sake of simplicity. However
closed strings are of interest as they are the foundation of Type II (super)string theories which are of interest in this work.

Analogous to the open string solution (6.1.11) of the string sigma model equation of motion (6.1.9), the closed string (periodic)
boundary condition X(τ, σ + π) = X(τ, σ) does not require left–movers X+ and right–movers X− to form standing waves,

2X±(σ±) = x+ ℓ1α0σ
± + ıℓ1

∑︂
m∈Z∗

m−1α±
m exp(−2ımσ±),

where now we get two sets of string modes α+ and α− respective to each propagation directions, resulting in two sets of
Virasoro modes L+ and L− of the corresponding energy–momentum tensor, each set independently satisfying the Virasoro
algebra, while each set commutes with the other. Classically:

[L±
m|L±

n ] = (m− n)Lm+nδ±±.

The conformal anomaly

Without going into details (see [2, 4] for further details), the Faddeev–Popov gauge fixing produces extra terms, the ghost
action

Sghost
1 ∝ ⟨c−∂+b−− + c+∂−b++⟩Σ

where c is a vector ghost field and b a traceless symmetric antighost tensor field, with corresponding energy–momentum
tensor

T±± = −ı
(︃
∂±c

±b±± +
1

2
c±∂±b±±

)︃
.

The Virasoro modes satisfy ∀m,n ∈ Z the extended algebra

[Lghost
m |Lghost

n ] = (m− n)Lghost
m+n −

1

6
m(13m2 − 1)δm+n|0.

The total Virasoro modes ∀m ∈ Z
Ltotal
m = Lm + Lghost

m − aδm|0

thus satisfy the algebra

[Ltotal
m |Ltotal

n ] = (m− n)Ltotal
m+n +

1

12
m((dimX − 26)m2 + (2 + 24a− dimX ))δm+n|0,

where a is a constant correction on L0 stemming from its normal ordering arbitrariness [2]. The conformal anomaly (algebra
extension) vanishes for dimX = 26 and a = 1 for a bosonic string theory.

The aforementioned critical dimension for bosonic strings can be derived by studying the conformal anomaly of fermion ghosts
arising from the Faddeev–Popov gauge fixing of the string action.The general form of the conformal anomaly stemming from
a conformal analysis of a Euclidean version is

c(ε, λ) = −2ε(6λ2 − 6λ+ 1),

with ε and λ being the tensor ranks of each of the two ghost fields stemming from the gauge fixing.
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For bosonic strings, the two fermion ghosts have ε = 1 and λ = 2 respectively, leading to

cbosonic = −2 · 1 · (6 · 22 − 6 · 2 + 1) = −2(24− 12 + 1) = −2 · 13 = −26,

which can be countered by the contribution of dimX bosonic (λbosonic = 1) dimensions,

λbosonic dimX + cbosonic = 0 or dimX = 26.

A similar argument for string theory with fermions fixed to a superconformal gauge leads to dimX = 10. In superstring
theories two bosonic ghosts appear with ε = −1 and λ = 3/2, giving

cfermionic = −2 · (−1) ·
(︃
6 · 3

2

22
− 6 · 3

2
+ 1

)︃
= 2

(︃
27

2
− 9 + 1

)︃
= 2 · 11

2
= 11,

thus the total conformal anomaly is

csuper = cfermionic + cbosonic = 11− 26 = −15,

that assuming contributions from both bosonic degrees of freedom (λbosonic = 1) and their superpartners (λfermionic = 1/2),

(λbosonic + λfermionic) dimX + csuper = 0 or dimX = 10.

6.2. Fermions and superstrings

For string theory to be able to account for the standard model, a description and modeling of fermions is necessary. In string
theory, fermions manifest as a supersymmetry [2], and the two most common approaches to adding fermions are:

• the Ramond–Neveu–Schwarz (RNS) formalism which is world sheet supersymmetric, and

• the Green–Schwarz (GS) formalism which is spacetime supersymmetric.

In this section, the latter formalism will be presented which leads to related type II superstring theories. The foundation
is extending spacetime X to a superspace X ⊕ U⊕N , where U is informally a vector space over a 1–dimensional Grassman
algebra instead of a field (definition 1.1.7), with dimU = 2dimX/2, and N is the global factor to counting the number of
supersymmetric degrees of freedom (supercharges).

A first candidate

The (p+ 1)–dimensional sigma model action

Sp = −1

2
mp⟨
√
−dethhαβΠα ·Πβ⟩T×Σ , (6.2.1)

also models the dynamics of a Dp–brane, where ∀µ ∈ ZdimX , and ∀α ∈ ZdimΣ+1,

Πµ
α = ∂αX

µ

is the conjugate momentum for a bosonic string. Assume N supersymmetries, thus requiring N d–dimensional Majorana
spinor embeddings, indexed as ΘAa, ∀A ∈ ZN , and ∀a ∈ ZdimU . Type II string theory exhibits N = 2 supersymmetry, so
henceforth the supersymmetric component groups of Θ will be henceforth labeled Θ+ and Θ−.5

Relevant to spinors is the Grassman (anti–commuting) algebra whose (dimX total number of) generators Γ satisfy (in matrix
representation notation) the (general) Dirac algebra.

{Γµ|Γ ν} = 2ηµν1, or {Γµ|Γ ν}ab = {Γµ
ac|Γ ν

cb} = 2ηµνδab.

5These embeddings have opposite chirality in type IIA string theory and the same chirality in type IIB string theory.
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6.2. Fermions and superstrings

In such a case, ∀ψ a Majorana spinor, ψ = ψ†Γ0 and ∀ϕ another Majorana spinor and ∀µ ∈ ZdimX ,

ϕΓµψ + ψΓµϕ = 0.

Of importance in a Dirac algebra with dimX generators is the chiral matrix

Γ ∗ =
∏︂

µ∈ZdimX
Γµ,

for which, ∀µ ∈ ZdimX , {Γ ∗|Γµ} = 0 and Γ ∗Γ ∗ = 1.

Supersymmetry in the sense of transforming the super world hyper volume takes the form (fermionic vector index suppressed)
[59]

δϵΘ
± = ϵ± and δϵXµ = ı(ϵ−ΓµΘ− − ϵ+ΓµΘ+), (6.2.2)

where ϵ is the (here dimU–dimensional) antisymmetric tensor (here matrix) ∀A ∈ ZN=2.

The supergroup of transformations generated from Poincaré transformations and supersymmetric transformations (6.2.2)is
the super–Poincaré group.

The simplest supersymmetric extension of Π, for which δsupersymmetryΠ = 0 is [2, 59],6

Πµ
α = ∂αX

µ − ı(Θ−
Γµ∂αΘ

− −Θ+
Γµ∂αΘ

+).

It is prudent at this point to assume the N = 2 supersymmetry that arises from type IIB string theory in particular. In this
notation, the two super world hypervolume embeddings (Majorana–Weyl spinors) Θ+ and Θ− are of equal chirality and one
can set Θ = Θ+ = Θ−, which reduces the fermionic degrees of freedom by half. This comes down to Πµ

α = ∂αX
µ, indicating

that additional terms may be needed to represent supersymmetry in type IIB superstrings.

Kappa (κ) symmetry

Notably the supersymmetric part U has only half of its degrees of freedom independent (dimU/2 = 2dimX/2−1) [2].

This is modeled after the κ–symmetry, defined from the transformations [2, 59],

• ∀µ ∈ ZdimX , δκXµ = ı(Θ
−
ΓµδκΘ

− −Θ+
ΓµδκΘ

+),

• δκΘ
± = 2ΓµΠ α

µ κ±α,

• ∀α, β ∈ ZdimΣ+1, δκ(
√
−dethhαβ) = −8ı(∂γΘ

−
κ−βP+αγ − ∂γΘ

+
κ+βP+αγ)

where ∀α, β ∈ ZdimΣ+1, P±αβ =
√
− dethhαβ ± εαβ .

As a reminder, ε is the antisymmetric tensor, such that ∀A ∈ MdimV K,

detA = εα1...αdimV A1α1 . . . AdimV αdimV
.

For dimV = 2,

ε =

(︄
+1

−1

)︄
and detA = εαβA0αA1β .

Mind that εαβ = −εαβ and εαγεγβ = δαβ .

Corrections to the proposed Dp–brane action candidate (6.2.1) result is the full Green–Schwarz action, which consists of the
string sigma model equivalent action (that does not have κ symmetry)

Sp = −1

2
mp⟨
√
−dethhαβΠα ·Πβ⟩T×Σ ,

6Indeed, bar boundary terms,

δϵ(Θ
A
Γµ∂αΘ

A) = δϵΘ
A
Γµ∂αΘ

A +Θ
A
Γµ∂αδϵΘ

A = ϵAΓµ∂αΘ
A +Θ

A
Γµ∂αϵ

A = ∂α(ϵ
AΓµΘA) = ∂αδϵX

µ = δϵ∂αX
µ.
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6. String theory

and a separate part

∆S1 = −m1ϵ
αβ⟨ı∂αX · (Θ

+
Γ∂βΘ

+ +Θ
−
Γ∂βΘ

−) +Θ
+
Γ∂αΘ

+ ·Θ−
Γ∂βΘ

−⟩T×Σ ,

which is the missing part to the modification of the bosonic string action together with respecting the extra κ symmetry.

Assuming type IIB strings (Θ+ = Θ− = Θ), the κ symmetry simplifies to [59]:

• ∀µ ∈ ZdimX , δκXµ = 0,

• δκΘ = 2ΓµΠ α
µ κ±α,

• ∀α, β ∈ ZdimΣ+1, δκ(
√
−dethhαβ) = 0,

and the full Green–Schwarz action becomes (Πα = ∂αX)7

SGreen–Schwarz = Sboson + Sfermion = −1

2
m⟨
√
−dethhαβGαβ + 4ıϵαβ∂αX ·ΘΓ∂βΘ⟩T×Σ , (6.2.3)

where ΘΓ∂αΘ ·ΘΓ∂βΘ = 0 as a Grassman quartic term.

Compactification of extra dimensions

As explained in section §6.1. The bosonic string, superstring theory generally requires dimX = 10,8 which is different from
the macroscopically observed and expected spacetime dimension of 4. In analytical string theory, the subject is approached
by studying the topology of the spacetime background, and looking for topologies that are compactified in the 6 extra
dimensions, in the sense that the characteristic scale of said dimensions becomes irrelevant at low enough energy (or large
enough length) scales, with the most prominent example that of Calabi–Yao n–folds.

The topic of string theory background topology goes beyond the scope of this work,9 however, the motivation — compacti-
fication of extra dimensions — remains, and is the primary focus.

6.3. Matrix models

The Schild gauge

Integrating out the world–sheet metric by using its equation of motion (6.1.5) (see (6.1.6) as well), the original Nambu–Goto
action for the bosonic strings emerges,

Sboson = −m⟨
√
−detG⟩T×Σ .

For strings in particular (p = 1),

detG = εγδG0γG1δ = 2εγδ(∂0X · ∂γX)(∂1X · ∂δX) =

= εγδηµνηκλ∂0X
µ∂γX

ν∂1X
κ∂δX

λ = ηµνηκλ∂0X
µ∂1X

κεγδ∂γX
ν∂δX

λ. (6.3.1)

Note that
εγδ∂γX

ν∂δX
λ = −εδγ∂γXν∂δX

λ = −εγδ∂δXν∂γX
λ = −εγδ∂γXλ∂δX

ν ,

therefore flipping µ and ν with κ and λ,

ηµνηκλ∂0X
µ∂1X

κεγδ∂γX
ν∂δX

λ = ηκληµν∂0X
κ∂1X

µεγδ∂γX
λ∂δX

ν = −ηµνηκλ∂1Xµ∂0X
κεγδ∂γX

ν∂δX
λ.

Splitting the term in (6.3.1) leads to[1, 59],

2 detG = ηµνηκλH
µκHνλ, Hµν = εαβ∂αX

µ∂βX
ν . (6.3.2)

7Abbreviating the string tension m1 to m.
8M–theory, which is not presented in this text, closely requires dimX = 11, however the argument about compactification remains the same [2].
9See [2] for a good discussion of the matter.
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6.3. Matrix models

Recall that the Poisson bracket for two scalar functions f and g is given by [4, 59],
√
−deth[f |g]Poisson = εαβ∂αf∂βg, (6.3.3)

therefore
2 detG = dethηµνηκλ[X

µ|Xκ]Poisson[X
ν |Xλ]Poisson = deth tr([X|X]Poisson · [X|X]Poisson),

and the bosonic action becomes
√
2Sboson = −m⟨

√︁
−deth trX ([X|X]Poisson · [X|X]Poisson)⟩T×Σ .

In a similar fashion, the fermionic action becomes

Sfermion = −2ım⟨
√
−dethΘΓ · [X|Θ]Poisson⟩T×Σ .

The Schild action, defined on a different world sheet auxiliary metric gauge hSchild,

4SSchild = ⟨
√︁
−dethSchild(a(trX ([X|X]Poisson · [X|X]Poisson)− 2ıψ tr(Γ · [X|ψ]Poisson)) + b)⟩T×Σ

= ⟨(
√︁
−dethSchild)

−1aηµνηκλε
αβεγδ∂αX

µ∂βX
κ∂γX

ν∂δX
λ − 2ıηµνε

αβ∂αX
µψ tr ∂βΓ

νψ +
√︁
−dethSchildb⟩T×Σ , (6.3.4)

is equivalent to the Green–Schwarz action [1, 59].

Indeed, by integrating the auxiliary metric volume
√
−dethSchild,

2
√︁
−dethSchild =

√︂
−ab−1ηµνηκλεαβεγδ∂αXµ∂βXκ∂γXν∂δXλ or

√︁
−2 dethSchild =

√︁
−ab−1 detG, (6.3.5)

and substituting the Schild world sheet auxiliary metric volume solution (6.3.5) to the Schild action (6.3.4), the Green–Schwarz
action (6.2.3) is retrieved for suitable a and b.

The N = 2 supersymmetry of the Green–Schwarz action manifests in the Schild gauge in two forms [1]:

• Homogeneous transformations (redefining ϵ),

δϵψ = −1

2
[Xµ|Xν ]PoissonΓ

µνϵ and δϵX = ıϵΓψ and ϵ =
1

2
(ϵ1 − ϵ2),

that vanish for vanishing X.

• Inhomogeneous transformations (ξ being complementary to ϵ),

δξψ = ξ and δξX = 0, ξ =
1

2
(ϵ1 + ϵ2),

that for vanishing X.

Note that ∀µ, ν ∈ ZdimX ,

Γµν = Γ [µΓ ν] =
1

2
[Γµ|Γ ν ].

The corresponding bosonic and fermionic parts of the Schild action are (dropping the b term and redefining the coupling
constraint a = g−2),

S = Sboson + Sfermion =
1

4
g−2⟨
√
−deth trX ([X|X]Poisson · [X|X]Poisson)⟩T×Σ −

1

2
g−2⟨
√
−dethψ trX (Γ · [X|ψ]Poisson)⟩T×Σ

(6.3.6)
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6. String theory

Varying the action of the bosonic model Sboson (Sfermion = 0 and no supersymmetry),

4
√
−dethg2δSboson = δ⟨ηµνηκλεαβεγδ∂αXµ∂βX

κ∂γX
ν∂δX

λ⟩T×Σ

= ηµνηκλε
αβεγδ⟨δ∂αXµ∂βX

κ∂γX
ν∂δX

λ

+ ∂αX
µδ∂βX

κ∂γX
ν∂δX

λ

+ ∂αX
µ∂βX

κδ∂γX
ν∂δX

λ

+ ∂αX
µ∂βX

κ∂γX
νδ∂δX

λ⟩T×Σ

= ηµνηκλε
αβεγδ⟨(δµρδ ϵ

α ∂βX
κ∂γX

ν∂δX
λ

+ ∂αX
µδκρδ

ϵ
β ∂γX

ν∂δX
λ

+ ∂αX
µ∂βX

κδνρδ
ϵ

γ ∂δX
λ

+ ∂αX
µ∂βX

κ∂γX
νδλρδ

ϵ
δ )δ∂ϵX

ρ⟩T×Σ

= ⟨(ηρνηκλεϵβεγδ∂βXκ∂γX
ν∂δX

λ

+ ηµνηρλε
αϵεγδ∂αX

µ∂γX
ν∂δX

λ

+ ηµρηκλε
αβεϵδ∂αX

µ∂βX
κ∂δX

λ

+ ηµνηκρε
αβεγϵ∂αX

µ∂βX
κ∂γX

ν)δ∂ϵX
ρ⟩T×Σ

= ⟨((ηρνηκλεϵβ∂βXκ + ηµνηρλε
αϵ∂αX

µ)εγδ∂γX
ν∂δX

λ

+ εαβ∂αX
µ∂βX

κ(ηµρηκλε
ϵδ∂δX

λ + ηµνηκρε
γϵ∂γX

ν))δ∂ϵX
ρ⟩T×Σ

= ⟨((ηρνηκλεϵβ∂βXκ + ηµνηρλε
αϵ∂αX

µ)Hνλ

+ Hµκ(ηµρηκλε
ϵδ∂δX

λ + ηµνηκρε
γϵ∂γX

ν))δ∂ϵX
ρ⟩T×Σ

= ⟨(Hρκε
ϵβ∂βX

κ +Hµρε
αϵ∂αX

µ

+ Hρλε
ϵδ∂δX

λ +Hνρε
γϵ∂γX

ν)δ∂ϵX
ρ⟩T×Σ

= 4⟨Hρµε
ϵα∂αX

µδ∂ϵX
ρ⟩T×Σ ,

where the matrix H is the Poisson bracket defined in (6.3.2). Integration by parts and discarding total derivative integrants
(turning to vanishing boundary terms)

√
−dethδSboson = g−2⟨(∂ϵHρµε

ϵα∂αX
µ +Hρµε

ϵα∂ϵ∂αX
µ)δXρ⟩T×Σ .

Taking into account that εϵα∂ϵ∂α = 0,
√
−dethδSboson = −g−2⟨εϵα∂ϵHρµ∂αX

µδXρ⟩T×Σ = −g−2⟨[Hρµ|Xµ]PoissonδX
ρ⟩T×Σ = −g−2⟨[Hρµ|Xµ]PoissonδX

ρ⟩T×Σ

or
δSboson = −g−2⟨[[Xρ|Xµ]Poisson|Xµ]PoissonδX

ρ⟩T×Σ = 0,

leading to the bosonic equation of motion (free indices suppressed),

ηµν [X
µ|[Xν |X]Poisson]Poisson = 0.

The Lorentzian IKKT matrix model

The Green–Schwarz action (6.3.4) in the Schild gauge constitutes a hint on a model that can describe strings non–perturbatively.
In 1996, Ishibashi, Kawai, Kitazawa and Tsuchiya proposed a matrix model (IKKT model) as a regularization of type IIB
string theory as described by the Green–Schwarz action (6.3.4) in the Schild gauge [1].

The precise correspondence between the models is [1, 4, 59],

Type IIB string theory IKKT N–size matrix model

∂ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 0
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6.3. Matrix models

X ∈ X T×Σ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A ∈ MNCdimX traceless hermitian

ψ ∈ UT×Σ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ψ ∈ MNCdimU traceless hermitian

g−2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N

ı[·|·]poisson −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [·|·]

⟨
√
−deth(·)⟩T×Σ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ trT×Σ(·)

Recall that in type IIB string theory with κ–symmetry, eliminating half the fermionic degrees of freedom gives

dimU = 2dimX/2−1.

The key points in this correspondence are:

• The dimensional reduction of the background to a point (effectively eliminating X–derivatives).

• The discretization of the world sheet objects using hermitian matrices.

Applying these modifications to the modified Schild action (6.3.6),

Sboson =
1

4
g−2⟨
√
−deth tr([X|X]Poisson · [X|X]Poisson)⟩T×Σ −

1

2
g−2⟨
√
− dethψ tr(Γ · [X|ψ]Poisson)⟩T×Σ ,

the (Lorentzian) IKKT action becomes

S = −N trT×Σ

(︃
1

4
trX ([A|A] · [A|A]) + 1

2
ψΓ · [A|ψ]

)︃
= −N trT×Σ

(︃
1

4
ηµνηκλ[A

µ|Aκ][Aν |Aλ] +
1

2
ηµνψαΓ

ν
αβ [A

µ|ψβ ]

)︃
(6.3.7)

where the A bosons are 10 N ×N hermitian and traceless matrices, and Γ are the 10 Majorana–Weyl representation 16× 16
matrices. The fermion vector indices are exposed for clarity.

T ×Σ hermiticity

The worldsheet embedding X is discretized by hermitian matrices by design of the IKKT matrix model so that the spacetime
generated is real in lieu of the real eigenvalues of the bosonic matrices A.

Relation to super Yang–Mills theories

The Lorentzian IKKT action at zero spacetime volume resembles the zero–volume N = 1 super Yang–Mills action (5.2.5),
where there is a direct correspondence between the N ×N matrix structure of the N = 2 type IIB superstring theory and
the N = 1 super Yang Mills internal SUN gauge structure.10

X dimensional reduction

The IKKT matrix model encodes the world sheet geometry in a new fuzzy object (the bosonic matrices A), being in line
with Connes’ approach to geometry via operators (matrices) [4, 70]. But there is more to the correspondence between the
IKKT bosonic matrices A and the worldsheet geometry X in type IIB superstring theory [5, 71].

10As briefly presented in section §5.2. Quantum Field Theory.
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6. String theory

Symmetries of the IKKT model

With the type IIB / IKKT correspondence introduced in [1], N = 2 the supersymmetry transformations of the Schild action
become in the IKKT model (in full index notation)

δ1ψα =
1

2
ı[Aµ|Aν ]Γµν

αβϵβ and δ1Aµ = ıϵαΓ
µ
αβψβ ,

and
δ2ψα = ξα and δ2Aµ = 0µ,

respectively.

Finally the gauge symmetry of the action is SUNC for both A and ψ. The infinitesimal transformation ∀ıU ∈ suNC
(hermitian) is

δgaugeψα = [ıU |ψα] and δgaugeA
µ = [ıU |Aµ]. (6.3.8)

Finally, the model is translationally–symmetric,

δtranslationψα = 0α and δtranslationA
µ = αµ

1.

Let Q1 and Q2 be the corresponding supersymmetric generators, and P the translational generators, with

Q1 = Q1 +Q2 = and Q2 = ı(Q1 −Q2).

By the equation of motion of ψ,
Γµ

αβ [Aµ|ψβ ] = 0α,

and up to gauge symmetry (6.3.8), it was shown in [1] and reviewed in [71] that,

[ϵαQi|ξαQj ] = −2δijϵαΓ
µ
αβξβPµ, (6.3.9)

which stands for the full (on–shell) supersymmetry N = 2 algebra of the IKKT matrix model, further hinting at the
interpretation of the eigenvalues of A a spacetime. From the fact that N = 2 supersymmetry is maximal in dimX = 10
dimensions, any theory with supersymmetry (6.3.9) must include gravity, provided it is unitary and has a massless spectrum
[5, 71].

The Euclidean IKKT matrix model

The Wick rotation of the Lorentzian IKKT action (6.3.7) involves the following modifications:11

Lorentzian Euclidean

A0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ıA10

Γ0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ıΓ10

η −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ metric signature change −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1

index in ZdimX −−−−−−−−−−−−−−−−−−−−−−−−−−−→ index 0→ dimX −−−−−−−−−−−−−−−−−−−−−−−−−−−→ index in NdimX

For the Pauli matrices

σ0 = 1, σ1 =

(︃
+1

+1

)︃
, σ2 = ı

(︃
+1

−1

)︃
and σ3 =

(︃
+1

−1

)︃
,

11Mind the use of lower indices for the Lorentzian analogs.
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6.3. Matrix models

the representation for the gamma matrices Γ of the Euclidean model is chosen as (Γ0 shown for completeness)

Γ0 = ıσ0 ⊗ σ0 ⊗ σ0 ⊗ σ0. Γ1 = ıσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2,

Γ2 = ıσ2 ⊗ σ2 ⊗ σ0 ⊗ σ1, Γ3 = ıσ2 ⊗ σ2 ⊗ σ0 ⊗ σ3,

Γ4 = ıσ2 ⊗ σ1 ⊗ σ2 ⊗ σ0, Γ5 = ıσ2 ⊗ σ3 ⊗ σ2 ⊗ σ0,

Γ6 = ıσ2 ⊗ σ0 ⊗ σ1 ⊗ σ2, Γ7 = ıσ2 ⊗ σ0 ⊗ σ3 ⊗ σ2,

Γ8 = ıσ1 ⊗ σ0 ⊗ σ0 ⊗ σ0, Γ9 = ıσ3 ⊗ σ0 ⊗ σ0 ⊗ σ0,

Γ10 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0.

The Euclidean IKKT action then becomes (all lower indices now)

S = Sboson + Sfermion

= −Nδµν trT×Σ

(︃
1

4
δκλ[Aµ|Aκ][Aν |Aλ]−

1

2
ψαΓµαβ [Aν |ψβ ]

)︃
= −N trT×Σ

(︃
1

4
[Aµ|Aν ][Aµ|Aν ]−

1

2
ψαMαβψβ

)︃
, (6.3.10)

where the linear antisymmetric fermion operatorM is defined ∀ψ by

(Mψ)α = Γµαβ [Aµ|ψβ ]. (6.3.11)

M is an N2 dimU ×N2 dimU matrix, traceless on each of its N ×N submatrices indexed by its non–spinor indices,

Mαaa′βbb′ =Mαaa′βbb′ − δaa′MαNNβbb′ − δbb′Mαaa′βNN +MαNNβNNδaa′δbb′ ,

where
Mαaa′βbb′ = Γµαβ(Aµa′bδab′ −Aµb′aδba′). (6.3.12)

Integrating fermions out of the corresponding Euclidean partition function,

Z =

∫︂
DADψDψ exp(−S) =

∫︂
DA exp(−Sboson) pfM =

∫︂
DA exp(−Seffective),

where for an antisymmetric matrix likeM, pf(U×T×Σ)2M =
√︁
det(U×T×Σ)2M, and

Seffective = Sboson − log pf(U×T×Σ)2M = S0 − ı arg pf(U×T×Σ)2M,

with S0 = ℜSeffective = Sboson − log |pfU×T×ΣM|.

Dynamical compactification of extra dimensions

The advantage of studying type IIB string theory is that it admits regularizations (prominently the IKKT matrix model) that
can in turn be studied non–perturbatively via finite–size–approximation simulations. One powerful aspect of the IKKT matrix
model in the zero–volume limit is the dynamic emergence of spacetime, and as such it is expected that the compactification
of the extra dimensions will also occur dynamically.

The bosonic matrix A

Each of the bosonic matrices in A stands for each of the 10 spacetime coordinates, so each array of eigenvalues shall represent
an event in such spacetime. However, as is evident from the IKKT action, the induced geometry is non–commutative (a fuzzy
one), which means that said bosonic matrices cannot be concurrently diagonalized to yield a clear cut event in spacetime. In
fact, non–commutativity translates to an uncertainty in the coordinates of an event, hence called a fuzzy event.

∀A ∈ MNC, and ∀g ∈ GLNC,
trT×Σ A = trT×Σ adg A = trT×Σ(gAg

−1).
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6. String theory

However A ∈ suNC as hermitian and traceless, thus the requirement that adg A remains hermitian,

(adg A)
† = (gAg−1)† = (g−1)†Ag† = gAg−1 = adg A,

requires that ∀g ∈ GLNC, g−1 = g†, therefore g ∈ UNC, which defines the internal matrix symmetry for the bosonic field A.
Recall that dimUNC = dim uNC = N2 and for a base ℓ in uNC, and ∀g ∈ UNC,

g = exp ıgaℓa.

The spacetime symmetry

A Euclidean spacetime is manifestly rotationally symmetric, hence a solid indicator that the 6 extra dimensions in type
IIB superstring theory — and by extension in the IKKT matrix model — are compactified, is the spontaneous rotational
symmetry breaking SOdimX → SOD, with D < dimX .12
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Figure 6.3.1.: The expectations ⟨λ⟩0 with
respect to the partition
function of phase–quenched
model S0, for various ma-
trix sizes N and their ex-
trapolation to N → ∞, at
which point all eigenvalue
expectations converge to a
single value [13].

The eigenvalues of the (symmetric) moment of inertia matrix,

Λµν = N−1 trT×Σ(AµAν), (6.3.13)

provide a length scale for each of the dimX extends of spacetime. It is ex-
pected that for an isotropic dimX–dimensional spacetime all dimX eigen-
values are identical. Note however that an anisotropy in specific spacetime
directions has no preference in direction become different, therefore when
averaging said eigenvalues, in a Monte Carlo simulation for instance, the
broken symmetry may disappear as the differences among the eigenvalues
cancel out when averaged with random orderings. To circumvent this, the
ordered vector of eigenvalues is measured in expectation instead, so that
differences have an added effect, if any or at all. This is possible for hermi-
tian A, because in such a case Λ is hermitian too (and positive definite at
that), thus having real positive eigenvalues.

In the case of generally complex Λ,13ordering has to be done by criteria
matching that of the expected physical measurement. This most of the
times means ordering eigenvalues of Λ by their real part, but using their
modulus is not uncommon.14

Isotropy in the phase–quenched Euclidean IKKT model

As described in chapter 5. Field theory, a complex action is a source of
problems when studying the corresponding system via Monte Carlo meth-
ods, that rely on the action to define sampling probabilities. One approach

is to use the phase–quenched model, named as such because the imaginary part of the action produces an imaginary phase
in the partition integral Z.

It has been shown in [13] that the phase–quenched model has no symmetry breaking, i.e. after reducing the breaking order
parameters added to the model initially, the full SO10 symmetry is restored, at finite scale ℓ2 ≈ 0.4, which is consistent
to the analytic result ℓ2 = 0.383 of the IKKT model studies wither the Gaussian Expansion Method [16, 17], as shown in
figure 6.3.1 [13].

Therefore the imaginary part of the action may be responsible for the spontaneous anisotropy by which 4 large dimensions
out of 10 shall emerge. The first milestone of this research is to explore the full Euclidean IKKT model, in search of such
anisotropy, as a numerical indication that the IKKT model is indeed a good candidate for type IIB superstring theory.
12See section §1.3. Differential Algebra for details on symmetries as matrix Lie groups.
13For example in the complexification of the Langevin process, see section §4.2. Complexification for a generic treatment of complexification.
14In the context of the complex Langevin method, the real part is preferred, because it is expected that the imaginary part eventually vanishes at

thermalization of the process.
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6.3. Matrix models

Euclidean IKKT variants

The Euclidean IKKT model may be defined for dimX < 10, which reduce to simpler toy models, which are a priori expected
to exhibit a similar spontaneous rotational symmetry breaking. The ones with a convergent partition functional are the 4–
dimensional [19] and the 6–dimensional [14] toy models. For these two models it is detT×ΣM that appears after integrating
the fermions out instead of pfT×ΣM.

The fermion dimension for even spacetime dimension dimX is 2dimX/2−1. As shown in [7, 19, 21], the dimX = 4 model
exhibits no spontaneous rotational symmetry breaking, leaving the dimX = 6 toy model as the only viable candidate for
testing the dynamical compactification hypothesis.

For dimX = 4, the corresponding gamma matrices are Γµ = ıσµ, ∀µ ∈ {0, 1, 2, 3}, where Γ4 = −ıΓ0, or

Γ0 = ıσ0, Γ1 = ıσ1,

Γ2 = ıσ2, Γ3 = ıσ3,

Γ4 = σ0.

The corresponding fermion determinant detT×ΣM is real for this model.

For dimX = 6, the corresponding gamma matrices are

Γ0 = ıσ0 ⊗ σ0, Γ1 = ıσ1 ⊗ σ2,

Γ2 = ıσ2 ⊗ σ2, Γ3 = ıσ3 ⊗ σ2,

Γ4 = ıσ0 ⊗ σ1, Γ4 = ıσ0 ⊗ σ3,

Γ6 = σ0 ⊗ σ0.

The corresponding fermion determinant detT×ΣM is complex for this model.
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7. Methodology

7.1. The Gaussian Expansion Method (GEM)

Concept

Hereon the Euclidean IKKT model will be used for reference as is developed in [22, 23]. The full Euclidean IKKT action
(6.3.10), written in dimX–agnostic but N–dependent form,1 is

S = Sboson + Sfermion,

with
Sboson = −1

4
N trT×Σ [Aµ|Aν ][Aµ|Aν ], (7.1.1)

and
Sfermion = −1

2
N trT×Σ ψαMαβψβ =

1

2
N trT×Σ ψαΓµαβ [Aµ|ψβ ]. (7.1.2)

with a moment of inertia tensor (6.3.13)
Λµν = N−1 tr(AµAν), (7.1.3)

generating the ordered eigenvalues as order parameters for the spacetime extends.

In terms of bosonic degrees of freedom, the theory has manifest SOdimX symmetry, while in terms of internal string (here
finite size N ×N matrix) degrees of freedom, SUN is manifest.

A perturbative analysis of a (quantum) field theory2 relies on the action of the theory having a known or analytically
solvable part, which is usually quadratic in terms of the fields, generating a Gaussian term in the partition function which is
analytically integrable. Mass terms in the action of most common quantum field theories are such.

The particular (Euclidean IKKT) model does not contain such a term on either Sboson or Sfermion. The main idea of the
Gaussian Expansion Method (GEM) is to introduce such a Gaussian term S0 in the IKKT action,

S = SGEM − S0 or SGEM = S + S0,

treating SGEM perturbatively and −S as the one–loop counter–term.3 The requirement that S is Gaussian leaves a lot
of parametric freedom on which results of the corresponding theory are expected to depend. The generic ansatz of GEM
(effectively) is that such a dependence has plateaus, which are interpreted as effective parametric independence [22], as results
are expected to be independent from the parameters defining the artificial Gaussian part.4

Gaussian action

Bosonic

The most general bosonic Gaussian action term in the context of an N–size A–bosonic matrix model that respects both the
matrix internal SUN and the bosonic rotational SOdimX symmetries is

S0|boson =
1

2
N2 trX (1 · Λ) = 1

2
N2δµνΛµν .

1Recall that possible values for dimX ≤ 10 with a convergent IKKT partition function are 4, 6 and 10.
2Not presented in this text, see [69] for details on perturbative analysis of quantum field theories
3For details on renormalization in quantum field theories, see [69].
4See chapter 8. The Euclidean IKKT matrix model for specifics on each model explored.
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7. Methodology

As explained earlier in section §6.3. Matrix models, and in context with the fact that dimX = 10 in type IIB superstring
theory, the necessity to compactify the extra 6 dimensions to yield a 4–dimensional (euclidean in this case) spacetime as part
of superstring phenomenology, requires to manifestly break SOdimX in this model, adding parametric freedom to the bosonic
Gaussian part (by replacing 1→ mboson),

S0|boson =
1

2
N2 trX (mboson · Λ) =

1

2
N2mboson|µνΛµν =

1

2
Nmboson|µν trT×Σ(AµAν),

where mboson is a (bosonic mass) parameter matrix imposing anisotropy in the bosonic degrees of freedom. Assuming the
moment of inertia matrix λ is always diagonalizable as a real and symmetric matrix,5 the mass parameter matrix can be
reduced to a mass vector corresponding to the moment of inertia eigenvalues hereon labeled with a single (bosonic) index,
yielding a bosonic Gaussian part

S0|boson =
1

2
N2mboson|µλµ. (7.1.4)

To simplify, the following replacement can be made

λµ = N−1 trT×Σ A
2
µ, (7.1.5)

effectively using a manifestly diagonal bosonic Gaussian action term independent of bosonic representation, without loss of
generality, as it is also Gaussian and has the same parametric freedom as (7.1.4).

Fermionic

The fermionic Gaussian part assumes a similar form,

S0|fermion = Nmfermion|αβ trT×Σ(ψαψβ).

Note how mfermion only corresponds to dimU degrees of freedom, in contrast toM corresponding to dimU ×N ×N degrees
of freedom. As expected mfermion shall depend on Γ matrices, though it depends largely on dimX and how it affects dimU
and fermion representations.

Observables and the free energy

The path integral Z can be renormalized in terms of the Gaussian path integral Z0 as

Z = Z0⟨exp(−(S − S0))⟩0, Z0 = ⟨exp(−S0)⟩0,

in a logic similar to that of reweighting, effectively treating exp(−S) as an observable (functional).6

The Boltzmann factor expands as

⟨exp(−(S − S0))⟩0 =
∑︂∞

n=0

1

n!
(−1)n⟨(S − S0)

n⟩ = 1 +
∑︂∞

n=1

1

n!
(−1)n⟨(S − S0)

n⟩

with
⟨(S − S0)

n⟩ = ⟨(Sboson − S0 + Sfermion)
n⟩ =

∑︂n

k=0

n!

(n− k)!k!
⟨(Sboson − S0)

n−kSk
fermion⟩0

In the free energy (log 1 = 0),

−F = logZ = logZ0 + log

(︃∑︂∞

n=1
(−1)n

∑︂n

k=0

1

(n− k)!k!
⟨(Sboson − S0)

n−kSk
fermion⟩0

)︃
(7.1.6)

5It is real because ∀µ ∈ NdimX , Aµ is hermitian thus trT×Σ Aµ ∈ R (not to mention traceless, thus trT×Σ Aµ = 0), and thus ∀ν ∈ NdimX ,
trT×Σ(AµAν) ∈ R also. ∀A,B ∈ MNC hermitian matrices,

tr(AB) = AijBji = AijB
∗
ij = (A∗

ijBij)
∗ = (AjiBij)

∗ = tr(AB)∗.

6See section §4.4. The complex action problem on reweighting.

92



7.2. Complex Langevin Method (CLM)

the effect of the logarithm is to reduce the sum expansion of all correlators ⟨·⟩0 (higher order expectations) to connected
correlators ⟨·⟩0|connected, corresponding to connected Feynman diagrams [22, 23], leading to an expression of the form

−F = logZ0 +
∑︂∞

n=1

∑︂n

k=0
Ck⟨(Sboson − S0)

n−kS2k
fermion⟩0|connected, Ck ∝

1

(n+ k)!
(−1)n−k.

Observables assume a similar expansion,

O = ⟨O⟩0 +
∑︂∞

n=1

∑︂n

k=0
Ck⟨O(Sboson − S0)

n−kS2k
fermion⟩0|connected.

Any finite order n ∈ N∗ truncation of (7.1.6), is dependent on S0 and thus is a parametric calculation of m and A. By the
generic GEM ansatz, stationary points satisfying

∂

∂mboson|µ
F = 0, ∀µ ∈ NdimX and

∂

∂mfermion|αβ
F = 0, ∀α, β ∈ ZdimU ,

that are also forming qualitatively dense regions in the combined mboson and mfermion parameter space is sought.

GEM broken symmetry ansatz

The dynamical compactification of extra dimensions as a broken rotational symmetry of the bosonic matricesA, SOdimX → SOD,
D < dimX , can be simulated in GEM context by proper parametric adjustment of S0. The most trivial example is setting

mboson|µ = m ∀µ ∈ NdimX and mfermion = 0,

leaving SOdimX unbroken.

In general, reducing SOdimX may leave residual symmetries in the remnant directions, usually in the form of either

SOD × SOC with C < dimX −D or SOD × ZC with C ≤ dimX −D, and D < dimX ,

where SOC corresponds to reminiscent rotational symmetry on the compactified dimensions, and ZC corresponds to exchange
symmetry on said dimensions. These specific symmetry partitions have been studied extensively in [22, 23].

It is worth noting that in all models, the parametric freedom of S0 is restricted by descending ordering of the bosonic masses
mboson|µ.

A free energy corresponds to each ansatz, and the one (in a parametric plateau) showing the smallest free energy can be the
true vacuum, assuming the ansatz search space is exhaustive.chapter 8. The Euclidean IKKT matrix modelcontains specific
results on the vacuum with the lowest free energy of the models under study.

7.2. Complex Langevin Method (CLM)

The main conjecture for the Euclidean IKKT model is that the imaginary part of the action due to (integrating out)
the fermions is responsible for the spontaneous rotational symmetry breaking standing for the compactification of the extra
dimensions in string theory; specifically SO10 → SO4 for the original type IIB string theory model, standing for the emergence
of the macroscopically observed 4–dimensional spacetime.

In this section the application of the complex Langevin stochastic calculus is applied to type IIB string theory in the context
of its IKKT finite matrix regularization.

The Euclidean IKKT effective action reads

Seffective = Sboson − log pf(U×T×Σ)2M with Sboson = −1

4
N trT×Σ([Aµ|Aν ][Aµ|Aν ]), (7.2.1)
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7. Methodology

The bosonic part, becomes

Sboson = −1

4
N trT×Σ([Aµ|Aν ][Aµ|Aν ]) = −

1

4
N trT×Σ((AµAν −AνAµ)(AµAν −AνAµ))

= −1

4
N trT×Σ(AνAµAµAν −AνAµAνAµ −AµAνAµAν +AµAνAνAµ)

= −1

2
N trT×Σ(AµAµAνAν −AµAνAµAν) = −

1

2
N trT×Σ(Aµ[Aµ|Aν ]Aν),

whose (complex) derivative is,7

∂

∂A⊤
o

Sboson = −1

2
N trT×Σ

∂

∂A⊤
o

(AµAµAνAν −AµAνAµAν)

= −1

2
N trT×Σ(2(AoAνAν +AµAµAo)−AνAoAν −AµAµAo −AoAνAν −AµAoAµ)

= −1

2
N trT×Σ(AoAµAµ − 2AµAoAµ +AµAµAo)

= −1

2
N trT×Σ([Ao|Aµ]Aµ −Aµ[Ao|Aµ]) = −

1

2
N trT×Σ [[Ao|Aµ]|Aµ] = −

1

2
N trT×Σ [Aµ|[Aµ|Ao]],

where Aµ are hermitian and traceless N ×N matrices, for which A†
µ = Aµ or A∗

µ = A⊤
µ , ∀µ.

Similarly, the derivative of the fermionic part is

∂

∂A⊤
µ

Sfermion = − ∂

∂A⊤
µ

log pf(U×T×Σ)2M = −1

2

∂

∂A⊤
µ

log det(U×T×Σ)2M = −1

2

∂

∂A⊤
µ

tr(U×T×Σ)2 logM

= −1

2
tr(U×T×Σ)2

(︃
∂

∂A⊤
µ

MM−1

)︃
.

which defines a (complex) Langevin equation,8

∆Aµ = υµ∆τ + ηµ
√
∆τ with drift υµ = − ∂

∂A⊤
µ

Seffective =
1

2
trT×Σ

(︃
N [Aν |[Aν |Aµ]] + trU

∂

∂A⊤
µ

MM−1

)︃
, (7.2.2)

and a Wiener process generated discretely by hermitian ηµ with σ =
√
2.

Consistency in the complex Langevin process (7.2.2) demands that A ∈ MNCdimX , i.e. hermiticity is broken, and A is
complexified.9 Derivation with A∗ and A⊤ is the same when A is hermitian, so whichever is chosen when complexifying A
leads to a valid extension of said Langevin process. In this study, A⊤ was chosen.

Observables are evaluated as estimated means on (thermalized) sample paths of the stochastic process generated by (7.2.2),

⟨O⟩ =
∑︁

n>n0
On∆τn∑︁

n>n0
∆τn

. (7.2.3)

The reason for reaching thermalization first is the fact that a field theory is the stochastic limit at equilibrium of a correspond-
ing stochastic process as approached by stochastic quantization.10 Note that summation is performed after thermalization
time n0 ∈ N, which stands as an approximation of the τ →∞ equilibrium limit.

The continuum limit ∆τ → 0 corresponds to the expectation values averaged with the noise probability density η, which
correspond to the expectations defined by the Fokker–Planck probability density given by (4.4.2). Assuming a total duration
of T , one can formally write

⟨O⟩ = limT→∞

(︃
T−1 limτ0→∞

∫︂ T

0

dτO(τ + τ0)

)︃
. (7.2.4)

7See section §4.2. Complexification for details.
8Note that tracing A is different to tracing M.
9Note that tracelessness of A is maintained nonetheless.

10See chapter 4. Stochastic Quantization for details.
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7.2. Complex Langevin Method (CLM)

Holomorphicity of O is crucial in the validity of estimator (7.2.4) [35, 36, 37] in the context of the complex Langevin equation,
a results that otherwise stems from stochastic quantization (real Langevin) [16, 32, 68].11

Stepping

For the transient phase of the Langevin stochastic process, an adaptive step size scheme is adopted to reduce the probability
of instabilities to flourish under discretization of the process. The drift term is the only one responsible for such divergences
therefore its amplitude

∥υ∥2 ∝=
∑︂

µ

⃦⃦⃦⃦
∂

∂A⊤
µ

Seffective

⃦⃦⃦⃦2
=
∑︂

µ

∑︂
a

∑︂
b

⃓⃓⃓⃓
∂

∂Aµba
Seffective

⃓⃓⃓⃓2
(7.2.5)

is expected to guide the time stepping routine ∀n ∈ N as,

∆τn =

⎧⎨⎩∆τ0 ∥υn∥ ≤ ∥υ0∥ ∨ n ≤ n0,

∆τ0
∥υ0∥
∥υn∥

∥υn∥ > ∥υ0∥ ∧ n > n0,

where n0 is the number of steps after (adequate) thermalization of the process. Estimators (7.2.3) are computed over the
thermalized time history only (n > n0). ∆τ0 is taken as small as possible, but it is cut off by requirement of thermalization,
as too small a time step requires too many iterations per simulation to thermalize.

Validity of the complexified Langevin method

A necessary condition according to [38] for (complexified) estimators which are basically functionals of the (complexified)
Langevin process A, to converge to the corresponding observables at equilibrium, is for the drift norm (7.2.5) to vanish
asymptotically faster than exponentially, hence the drift norm is an extra quantity in need of monitoring, to validate or
discard a run.

As assumed in section §4.4. The complex action problem, an observable O shall admit a holomorphic extension O as part
of complexification of ϕ into ϕ. While this also includes an extended Hamiltonian A, the expectation of O obeys the real
version of the time evolution (4.3.3)

∂

∂τ
⟨O⟩ = A⟨O⟩ with ⟨O0⟩ = ⟨O(ϕ0)⟩ for ϕ0 = ϕ(τ0) and

∂

∂τ
ϱ = −A⊤

ϱ,

with formal solution
⟨O⟩ = : exp(τA):⟨O0⟩,

where expectation is assumed over the real probability Fokker–Planck distribution ϱ (and not the complex one ϱ), and

exp(τA) =
∑︂

n∈N

τnAn

n!
,

with notation :An:, ∀n ∈ N, denoting the reordering of all ∇ operators in An to the right.12

For O holomorphic, AO = AO [38], allowing the redefinition

⟨O⟩ = : exp(τA):⟨O0⟩ =
∑︂

n∈N

τn

n!
⟨:An

:O0⟩, (7.2.6)

where placing the expectation inside the exponents, reduces the expectation of O to a power series.
11Averaging is properly done with the noise density η, however η is stationary (and a Wiener process behind it at that) therefore noise sampling

is equivalent to sampling one noise process over stochastic time τ .
12Per the example in [38],

(f + ∂)2 = f2 + f∂ + ∂f + ∂2 versus : (f + ∂)2: = f2 + 2f∂ + ∂2.
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7. Methodology

∀n ∈ N, the integral ⟨:An
:O0⟩ϱ has maximum contributions from the dependence of A from the drift υ of the corresponding

Langevin process. The drift υ lives in the configuration space of ϕ, and as such, it may have a norm ∥υ∥.

Let
p(u, τ) = ⟨δ(∥υ∥ − u)⟩

be the probability distribution of the drift norm. Assume

∃κ ∈ R+ and ∃n0 ∈ N such that ∀n > n0, p(u, τ) ∼ exp(−κn) =
∑︂

n∈N

(−κ)n

n!
. (7.2.7)

For such a drift norm distribution, contributions to (7.2.6) become (expectations over p this time)

⟨∥υ∥n⟩ ∼ n!

κn+1
,

yielding an approximate radius of convergence κ for the power series (7.2.6) [38], making (7.2.7) a sufficient condition for
validity of the complex Langevin method.13

In figure 8.1.1 and figure 8.2.1 in chapter 8. The Euclidean IKKT matrix model, examples of valid and invalid simulation
runs can be seen when applied to toy models.

Fermion action and noisy estimators

The fermionic drift can be evaluated using any complex stationary stochastic process (noise), whose instances η ∈ V satisfy
⟨η∗η⟩ = 1, as

trM =MAaa′Aaa′ = δAaa′Bbb′MAaa′Bbb′ = ⟨η∗Aaa′ηBbb′⟩FMAaa′Bbb′ = ⟨η∗Aaa′MAaa′Bbb′ηBbb′⟩ = ⟨η∗Mη⟩.

The fermionic drift term becomes

tr

(︃
∂

∂A⊤
µ

MM−1

)︃
=

⟨︃
η∗

∂

∂A⊤
µ

Mχ

⟩︃
with χ =M−1η.

M†M is hermitian and positive definite, therefore — assuming invertibility of M†M — equation

M†Mχ =M†η,

is computationally solvable using the conjugate gradient method (also see section §1.4. Numerical linear algebra methods).14
Operations of M orM† on fermions are optimized by its definition (6.3.11) [7], as we did in [14, 15].

Bosonic field hermiticity and gauge cooling

The original theory assumes ∀µ, A†
µ = Aµ (hermitian traceless matrices), however Seffective being complex breaks consistency

in the Langevin equation (7.2.2), and A bosons require complexification, becoming generic traceless matrices in MNC.

Upon complexifying a hermitian traceless matrix A, its eigenvalues turn from real to complex, however, (by choice) the
matrix can be (and is in this work) kept traceless. ∀A,B ∈ MNC with trA = trB = 0 (based on the previous assumption),
tr[A|B] = tr(AB)−tr(BA) = 0, due to the cyclic property of the trace, hence the bosonic drift is traceless as well. By a similar
argument about the original tracelessness of A, every N ×N submatrix ofM remains traceless as well after complexification.

The symmetry group of trT×Σ on MNC is GLNC, in consistency with the complexification of UNC (table 1.3.2 on page 27).

dimGLNC = dim glNC = N2 still, and for a base ℓ in glNC, and ∀g ∈ GLNC,

g = exp gaℓa = exp(ℜga + ıℑga)ℓa.
13The argument presented here is a qualitative non–rigorous short version of the argument developed in [38, 42].
14When expectation values accumulate near 0, the conjugate gradient method may be slow to converge.
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7.2. Complex Langevin Method (CLM)

The Frobenius matrix norm extended to tensor field A as

∥A−A†∥2 ∝ N−1 trT×Σ(Aµ −A†
µ)

†(Aµ −A†
µ) = −N−1 trT×Σ(Aµ −A†

µ)
2,

is a good measure of hermiticity of A.

To avoid unnecessary excursions of the Langevin stochastic process in the imaginary direction, the gauge symmetry of the
effective action is utilized, to minimize said hermiticity norm.

∀A ∈ MNC traceless, (Aµ − A†
µ)

†(Aµ − A†
µ) ∈ suNC, i.e. is always hermitian and traceless. The trace of such matrix is

invariant only under arg g = exp ıℑgaℓa ∈ UNC, therefore |g| = expℜgaℓa generates a variation. For a boson A,

∆A = |g|A|g|−1 −A = exp(+ℜgaℓa)A exp(−ℜgaℓa)−A→ ℜgaℓaA−Aℜgaℓa = ℜga[ℓa|A],

and for its adjoint,

∆A† = (|g|A|g|−1)† −A† = exp(−ℜgaℓa)A† exp(+ℜgaℓa)−A† → A†ℜgaℓa −ℜgaℓaA† = −ℜga[ℓa|A†],

leading to a variation in the norm

∆∥A−A†∥2 ∝ −N−1 trT×Σ((Aµ −A†
µ)∆(Aµ −A†

µ)) = −N−1 trT×Σ((Aµ −A†
µ)(ℜga[ℓa|Aµ] + ℜga[ℓa|A†

µ]))

= −N−1 trT×Σ((Aµ−A†
µ)(ℜga[ℓa|Aµ+A

†
µ])) = −N−1ℜga trT×Σ ℓa[Aµ−A†

µ|Aµ+A
†
µ] ∝ N−1ℜga trT×Σ ℓa[Aµ|A†

µ] = ℜgaGa.

For UNC,15 the base matrices satisfy ℓabc ⊗ ℓade = δbeδcd.

H ∝ −ℓaGa sets the direction of steepest descent along which a minimum is sought,

Hab ∝ −ℓcabGc = −N−1ℓcabℓcde[Aµ|A†
µ]ed = −N−1δaeδbd[Aµ|A†

µ]ed = −N−1[Aµ|A†
µ]ab,

so a new B = gAg−1 with g = exp γH and γ that minimizes ∥B −B†∥2, which for fixed A is a function of γ.

Gauge cooling as it is called [41, 42, 44] modifies the discretized complex Langevin process by adding an intermediate step
as,16

B(τ) = g(τ)A(τ)g−1(τ) and A(τ +∆τ) = B(τ) + ∆τυ(τ) +
√
∆τη(τ) with g(τ) = exp(−γN−1[A(τ)|A†(τ)]). (7.2.8)

Spontaneous SOdimX symmetry breaking mechanism

In introducing a symmetry breaking mechanism to the model, the diagonal elements of the moment of inertia matrix λ as
in (6.3.13) are used, indexed only once, to avoid confusion with the Einstein index summation convention (definition 1.1.16).
The eigenvalues of the moment of inertia matrix Λ are non–holomorphic functions in the complexified A domain, while on the
other hand the diagonal elements of Λ (denoted with λ) can equivalently be used for breaking the rotational SO10 symmetry.

The symmetry breaking term is controlled by a global parameter ε ∈ R+ as [14, 15, 18]

∆Sboson =
1

2
N2εmboson|µλµ =

1

2
Nεmboson|µ trT×Σ A

2
µ,

where the bosonic masses in mboson define specific symmetry breaking parameters. Note that if mµ = mν ∀µ, ν ∈ NdimX ,
there is no explicit symmetry breaking. Adhering to the condition of ordering the values of the order parameter, bosonic
masses have to be ordered too.17

Smaller masses correspond to larger extends, therefore the vector mboson is usually chosen with increasingly ordered compo-
nents.
15Correspondingly, for SUNC, ℓabc ⊗ ℓade = δbeδcd −N−1δbcδde
16The one free index is suppressed here to avoid confusion with Einstein summation indexing.
17This term is precisely the Gaussian term S0|boson found in the GEM, see section §7.1. The Gaussian Expansion Method (GEM) for details.
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7. Methodology

Fermionic singularity and mass shifting

As seen by the differential equation (7.2.2) of the Langevin process A, the drift is singular due to the fermion matrix M
being manifestly non–invertible as antihermitian and (multiple times in each fermion sub–block) traceless. The eigenvalue
spectrum for M is centered at the complex 0. To circumvent the singularity, the spectrum of M is separated away from 0,
along one direction with the use of an fermionic mass deformation [14, 15, 18]

∆Sfermion =
1

2
Nmfermion trT×Σ(ψαγαβ(Γ )ψβ), (7.2.9)

where γ is generally a 10–dimensional polynomial matrix function of Γ matrices, depending only on the fermion indices. The
most typical examples are linear choices in one specific direction, for example γ = ΓdimX or γ = ΓdimX−3ΓdimX−2ΓdimX−1

combining 3 directions in one cubic term. Absorbing the effect of the fermion mass into the fermion matrixM as in (6.3.12),

Mαaa′βbb′(m) =Mαaa′βbb′ +mfermionγαβδab′δa′b,

it is understood that γ has to preserve the anti–symmetry ofM as well.

In figure 8.1.2 and figure 8.2.2 in chapter 8. The Euclidean IKKT matrix model, examples of how the spectrum of the fermion
matrixM is shifted towards a specific direction in the study of toy models.

The purely bosonic model

Deformations like (7.2.9) have a theory–landscape effect. The limit mfermion → 0 corresponds to the original theory, while
the limit mfermion →∞ decouples the fermions from the theory resulting in a purely bosonic IKKT model, which is expected
not to show any spontaneous symmetry breaking.

Primarily, the purely bosonic Euclidean IKKT model

Sboson = −1

4
N trT×Σ([Aµ|Aν ][Aµ|Aν ])

has no complex action (problem). Numerical simulations have shown that both the bosonic, and the full but phase–quenched
model show no spontaneous symmetry breaking indicating that (at least) for the Euclidean IKKT model, the imaginary part
of the fermion determinant/Pfaffian is responsible for the spontaneous symmetry breaking.

Degenerate configurations

It has been shown in [19] that the expected broken symmetry of the IKKT model does not go below SO2. This is evident for
dimX = 10 by the result pfM = 0 for configurations with A3 = A4 = . . . = AdimX = 0 [16]. More generally, pfM gradually
takes a simpler form as the dimensionality of the configurations is decreased. Adopting the notation in [19], ∀D ∈ NdimX ,
the set of all D–dimensional (degenerate) configurations can be expressed as

ΩD = {Aµ|∃n ∈ RdimX−D ⊗ RdimX such that ∀i ∈ NdimX−D, ni|µAµ = 0}.

These configurations are by definition spacetime directional, in a specific subspace of lower dimension D.

In [19] it is shown that:

• for A ∈ Ω9, pfM∈ R,

• for A ∈ Ω6, pfM≥ 0,

• for A ∈ Ω2, pfM = 0.

Similar arguments hold for dimX = 6:

• for A ∈ Ω5, detM∈ R,

• for A ∈ Ω2, detM = 0.
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7.2. Complex Langevin Method (CLM)

The method used in [19] was to replace the fermionic part of the effective action by

Γ = ℜΓ + ıℑΓ = log pf(U×T×Σ)2M

with limν→∞(ℜΓ+ıνℑΓ ), in effect extremizing the imaginary part of the action and forcing configurations for which exp ıνℑΓ
becomes stationary. Specifically for 2 ≤ D ≤ dimX − 2∏︂dimX−D

i=2

∂

∂Aµi

ℑΓ = 0,

which implies that the lower the dimensionality of the configuration A, the more stationary the complex phase of the effective
action is [14, 19]. For D = 2, pfM = 0 and limν→∞(ℜΓ + ıνℑΓ ) is ill–defined, indicating that Ω2 is a lower bound for
degenerate configurations. With this argument, the symmetry breaking mechanism SOdimX → SOD is not expected to go
below SO2. In fact, SO2 is also prohibited.

Holomorphic Observables

As has been mentioned earlier, the complexified moment of inertial Λ is non–holomorphic, which leaves a question about the
applicability and correctness of the CLM, in accordance with the strong criterion developed in (7.2.7) [38]. Since the criterion
is only sufficient, there is room for the applicability of the CLM provided an equivalent (and holomorphic) observable is
found. For the Euclidean model [14, 15, 72], the diagonal elements where used as observables

λµ = Λµµ (no summation implied)

instead of the true eigenvalues of Λ. however there exists an equivalent and holomorphic extraction of the (ordered) eigenvalues
of Λ with the help of the characteristic polynomial of Λ and its Vandermonde matrix.

Let the characteristic polynomial of Λ reads ∀λ ∈ C,

χΛ(z) = det(λ1− Λ) =
∏︂dimX

n=1
(λ− λn) = λdimX +

∑︂dimX

n=1
anλ

dimX−n,

meaning
a0 = 1, a1 = − trΛ = Λµµ (summation implied as usual) and adimX = (−1)dimX detΛ. (7.2.10)

The Vandermonde matrix approximation

The Vandermonde matrix ∀z ∈ CdimX ,

V (z) =

⎛⎜⎜⎜⎝
z1 · · · zdimX

1

...
. . .

...

zdimX · · · zdimX
dimX

⎞⎟⎟⎟⎠ .

The remaining coefficients after (7.2.10) are then the solution of the trimmed Vandermonde system⎛⎜⎜⎜⎝
z2 · · · zdimX−1

2

...
. . .

...

zdimX−1 · · · zdimX−1
dimX−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a2
...

adimX−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
χ∗
Λ(a2)

...

χ∗
Λ(adimX−1)

⎞⎟⎟⎟⎠ ,

with
zn = zmax + (zmin − zmax)(dimX − 3)−1(n− 1) with zmin = (1/2)1/(n−2) and zmax = (3/2)1/(n−2),

and ∀λ ∈ C,

χ∗
Λ(λ) = χΛ(λ)− (λdimX + a1λ

dimX−1 + adimX ) = χΛ(λ)− (λdimX − trΛλdimX−1 + (−1)dimX detΛ)

=
∑︂dimX−1

n=2
anλ

dimX−n.
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7. Methodology

Exact solution

In [73], recursively exact solutions of the characteristic polynomial coefficients are extracted as summations and products of
trace expressions bn = trΛn,18 ∀n ∈ N, special cases of which are found in (7.2.10).

As shown in [73], ∀m ∈ ZdimX+1, ∑︂m

n=0
αnbm−n = 0, (7.2.11)

leading to a recursive over the matrix size dimX ∈ N definition of characteristic polynomials,

λ − b1, dimX = 1

λ2 − b1λ + 2−1(b21 − b2), dimX = 2

λ3 − b1λ2 + 2−1(b21 − b2)λ − 6−1(b31 − 3b1b2 + 2b3), dimX = 3

. . .

It is interesting as observed by [73], characteristic polynomial coefficients grow statically as the matrix size dimX grows,
forming a sequence over dimX . Expanding equations (7.2.11),

−1a1 = b1,

−2a2 = b1a1 + b2,

−3a3 = b1a2 + b2a1 + b3,

. . .

Grouping the last set of equations into a power series,∑︂
n∈N

nanx
n = −

∑︂
m∈N

bm+1x
m
∑︂

n∈N
anx

n. (7.2.12)

In accordance with [73], let the generating functions for the sequences a and b of the characteristic polynomial and traces of
powers of the matrix Λ be

f(x) =
∑︂

n∈N
anx

n and g(x) =
∑︂

m∈N
bm+1x

m, (7.2.13)

such that
an = (n!)−1 ∂

n

∂xn
f(0) and bn+1 = (n!)−1 ∂

n

∂xn
g(0), ∀n ∈ N.

Replacing (7.2.13), (7.2.12) becomes the Cauchy problem

∂

∂x
f(x) = −g(x)f(x), f(0) = 1,

with solution

f(x) = exp

(︃
−
∫︂ x

0

g(t)dt

)︃
,

which gives

f(x) = exp
(︂
−
∑︂

n∈N∗
n−1bnx

n
)︂
=
∏︂

n∈N
exp(−n−1bnx

n) =
∏︂

n∈N∗

∑︂
mn∈N

(mn!)
−1(−n−1bnx

n)mn .

Grouping terms of equal power in x,

f(x) =
∑︂

n∈N
xn
∑︂

m∈Sn⊆Zn
n+1

∏︂n

k=1
(mk!)

−1(−k−1bk)
mk ,

18For n = 0, trΛ0 = tr1 = dimX .
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7.2. Complex Langevin Method (CLM)

where ∀n ∈ N, Sn ⊆ Zn
n+1 is the set of all natural number vector solutions m = (mk)

n
k=1 satisfying∑︂n

k=1
kmk = n.

The coefficients are then
an =

∑︂
m∈Sn⊆Zn

n+1

∏︂n

k=1
(mk!)

−1(−k−1bk)
mk , ∀n ∈ ZdimX+1,

a formula that can be used for finite cutoff n = dimX to calculate the coefficients of the characteristic polynomial χΛ of the
moment of inertia matrix Λ.

A example included in [73], applies the formula for calculating determinants. In particular,

detΛ = (−1)dimXadimX = (−1)dimX
∑︂

m∈SdimX⊆ZdimX
dimX+1

∏︂dimX

k=1
(mk!)

−1(−k−1bk)
mk . (7.2.14)

Expanding (7.2.14) for dimX = 10 of type IIB superstring theory,

detΛ = − 1

10
b10 +

1

9
b9b1 +

1

16
b8b2 −

1

16
b8b

2
1 +

1

21
b7b3 −

1

14
b7b2b1 +

1

42
b7b

3
1 +

1

24
b6b4 −

1

18
b6b3b1 −

1

48
b6b

2
2 +

1

24
b6b2b

2
1

− 1

144
b6b

4
1 +

1

50
b25 −

1

20
b5b4b1 −

1

30
b5b3b2 +

1

30
b5b3b

2
1 +

1

40
b5b

2
2b1 −

1

60
b5b2b

3
1 +

1

600
b5b

5
1 −

1

64
b24b2 +

1

64
b24b

2
1 −

1

72
b4b

2
3

+
1

24
b4b3b2b1 −

1

72
b4b3b

3
1 +

1

192
b4b

3
2 −

1

64
b4b

2
2b

2
1 +

1

192
b4b2b

4
1 −

1

2880
b4b

6
1 +

1

162
b33b1 +

1

144
b23b

2
2 −

1

72
b23b2b

2
1 +

1

432
b23b

4
1

− 1

36
b3b

3
2b1 +

1

144
b3b

2
2b

3
1 −

1

720
b3b2b

5
1 +

1

15120
b3b

7
1 −

1

240
b52 +

1

96
b42b

2
1 −

1

288
b32b

4
1 +

1

5760
b22b

6
1 −

1

80640
b2b

8
1 +

1

3628800
b101 .

Vieta formula

Another approach is to use Vieta formula, which relates the roots of a polynomial to its coefficients. In particular for the
characteristic polynomial χΛ and the eigenvalues (λn)

dimX
n=1 of the moment of inertia Λ (roots of χΛ),∑︂

1≤m1<...<mn≤dimX

∏︂n

k=1
λmk

= (−1)nan, ∀n ∈ ZdimX+1,

which provides another recursive analytic recipe for evaluating the ordered eigenvalues of Λ.

Assuming a0 = 1, a recursive formula is possible via the 2–loop algorigthm

a0 → 1 : ∀n ∈ ZdimX+1{an → 0 : ∀m ∈ Zn{am → am + λnam−1}}.

Eigenvalue expectation values as polynomials of expectations of holomorphic expressions

The characteristic polynomial is holomorphic, as is the polynomial solutions for its coefficients presented above, and finding
the eigenvalues of the moment of inertia is reduced to finding the roots of pΛ after (emphasis here) the expectation values of
the (holomorphic) coefficients via

⟨χΛ⟩ = ⟨det(λ1− Λ)⟩ = λdimX +
∑︂dimX

n=1
⟨an⟩λdimX−n.

Note that, while the eigenvalues of a matrix are interchangeable, the coefficients of the characteristic polynomial are not,
therefore the late ordering of the eigenvalues can and actually (based on simulations) match with those averaged from
straightforward measurement and ordering of the eigenvalues on each step of the (thermalized) Langevin process.

In each step of the process, the (unordered) eigenvalues are measured, then the coefficients of the characteristic polynomial are
evaluated via Vieta formula. At the end of the simulations, expectation values of the coefficients are estimated, and then used
to extract estimates for the expectation values of the eigenvalues. This process compared to estimating the ordered eigenvalues
outright gives similar results, indicating that the applicability of the CLM is not affected by the non–holomorphicity of Λ.
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8. The Euclidean IKKT matrix model

As discussed in section §6.3. Matrix models, the (ordered) eigenvalues of the moment of inertia tensor (6.3.13) represent the
extends of spacetime. To avoid using non–holomorphic complexified observables, the ordered set of the diagonal elements of
the moment of inertia tensor are assumed instead. The estimated observable

ρµ =
⟨λµ⟩∑︁
ν⟨λν⟩

is a function of the finite size N , the global symmetry breaking parameter ε and the fermion deformation mass mfermion. The
dependence on ε is reduced between the numerator and the denominator, which makes the ε→ 0 extrapolation more reliable
and is the reason for using ρ as the set of order parameters [15]. In what follows, the following ordered composite limit is
estimated by extrapolation of the simplest possible fitting polynomial:

N−1 → 0 Elimination of finite size effects comes first for every deformed and explicitly symmetry–broken model. The model
is defined for N →∞ similarly to the thermodynamic limit in statistical mechanics, therefore is it the first parameter
to extrapolate. Linear

a1N
−1 + a0

and quadratic
a2N

−2 + a1N
−1 + a0

extrapolations were attempted.

ε → 0 Vanishing of the bosonic orders parameter to look for the spontaneous symmetry breaking of mfermion–deformed
model. Quadratic extrapolation

a2ε
2 + a1ε+ a0

as used for the bosonic order parameter.

mfermion −→ 0 Elimination of the mfermion–deformation to retrieve the original (Euclidean) IKKT model. Quartic (even)
extrapolation

a4m
4
fermion + a2m

2
fermion + a0

was used for the deformation fermionic mass.

The following result sections are organized as follows:

• Samples of the drift norm histories are given to show where the CLM fails or not, based on the fall–off speed of the
drift norm.

• Samples of the hermiticity norm histories are given to show the effect of gauge cooling in constraining the drift of A in
antihermitian direction.

• Samples of the eigenvalue spectrum of the fermion matrixM is given to show the effect of the fermion deformation in
eliminating the singular drift problem of the complex Langevin process A, due to the zero eigenvalues of M.

• Observable ρ plots in order of appearance:

◦ The selection of the symmetry–breaking bosonic masses mboson and fermion deformation γ matrix

◦ A sample depicting the N−1 → 0 extrapolation.

◦ A few samples depicting the spontaneous symmetry breaking (or symmetry recovery) by ε→ 0.

◦ The final plot where mfermion → 0 to examine the spontaneous symmetry breaking of the original model.

Next to the simulation results, the corresponding GEM search space results are displayed for comparison.
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8. The Euclidean IKKT matrix model

8.1. Euclidean Gaussian matrix model with dimX = 4

It has been shown that detM ≥ 0 in the 4–dimensional IKKT matrix model [7], meaning that customary Monte Carlo
methods are applicable. In that same study, it was shown that the model presents no spontaneous symmetry breaking, which
is a further hint that (at least for the Euclidean IKKT model) the imaginary part of the fermionic contribution ∝ log detM
on the effective action might be responsible for the spontaneous symmetry breaking.

In the GEM study [74] a Gaussian matrix model was used as an example with dimX = 4 that does have a complex action
and presents spontaneous symmetry breaking, which was later studied via the CLM in [18], namely,1

Sboson ∝ N tr(AµAµ) and Sfermion ∝ −NψαΓµαβAµψβ . (8.1.1)

This section presents and compares these results as a precursor to the dimX = 6, 10 exploration that followed.

Gaussian Expansion Method

For dimX = 4, dimU = 2, mfermion is recoded from a fermion mass matrix to a boson mass vector via the Γ matrices as

S0|fermion = mfermion|µψαΓµαβψβ ,

thus the parametric freedom is 4 + 4 and the ansatz search space is practically very small. In [74]the SO3 and SO2 × Z2

ansätze are explored.

SO3 ansatz (3 parameters)

mboson|1 = mboson|2 = mboson|3. (2 parameters including mboson|4)

mfermion|1 = mfermion|2 = mfermion|3 = 0. (1 parameters including mfermion|4)

This vacuum is realized for arbitrarily large N .

SO2 × Z2 ansatz (3 parameters)

mboson|1 = mboson|2, mboson|3 = mboson|4. (2 parameters)

mfermion|1 = mfermion|2 = 0, mfermion|3 = mfermion|4. (1 parameters)

This vacuum is realized for arbitrarily many fermion flavors Nfermion with fixed (and finite) ratio Nfermion/N for N → ∞,
indicating that SO2 is a surviving symmetry after the spontaneous symmetry breaking of SO4.

In particular, for Nfermion/N = 1, the observable values

λ1 = λ2 = 2.1, λ3 = 1.0 and λ4 = 0.8,

approximately correspond to
ρ1 = ρ2 = 0.35, ρ3 = 0.17 and ρ4 = 0.13, (8.1.2)

indicating that the surviving SO2 symmetry is also the extended one, with the broken dimensions being shrunken in com-
parison.

1A variant of the model was used in [74] originally found in [75], containing Nfermion fermion families instead of just one. In said study, the
large–N limit was taken with Nfermion/N fixed.
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8.1. Euclidean Gaussian matrix model with dimX = 4

Complex Langevin Method
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Figure 8.1.1.: Three sets of runs with varying ε and increasing mfermion that show how reducing both leads to problematic
drift fall–off for the Gaussian matrix model (8.1.1) [18].
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Figure 8.1.2.: A case for specific ε that shows the effect of the fermion mass deformation in eliminating zero eigenvalues in
M of the Gaussian matrix model (8.1.1) , as shown from left to right in increasing mfermion [18].
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Figure 8.1.3.: The hermiticity norm shown for a run with and without gauge cooling for a run of the Gaussian matrix model
(8.1.1) [18].

In [18], mboson = (20, 2+1, 2+2, 2+3) and γ = Γ4 were chosen.

In figure 8.1.1 some (discarded) cases are shown where the drift norm fall–off is not sub–exponential.

In figure 8.1.2 the fermion matrix eigenvalue spectrum is shown shifted away from the origin with tuning the deformation
mass mfermion, which results in a non–singular fermion matrix M.
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8. The Euclidean IKKT matrix model

In figure 8.1.3 shows an example of a run using gauge cooling and one without. While both runs do not seem to escape in
the imaginary direction, the constraint of A towards hermiticity is evident.
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Figure 8.1.4.: The N−1 → 0 limit of runs of the Gaussian matrix model (8.1.1) with linear extrapolation α1N
−1 + α0 from

finite size [18].

In figure 8.1.4 an example is shown where results seems consistent across various finite matrix sizes N . However a linear
extrapolation is taken for the limit N−1 → 0 regardless.
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Figure 8.1.5.: The ε → 0 limit with quadratic extrapolation β2ε
2 + β1ε + β0 showing the symmetry breaking mechanism

∆Sboson in the Gaussian matrix model (8.1.1). As the fermion deformation ∆Sfermion starts to vanish, the
extends of spacetime observables start to separate [18].

In figure 8.1.5, a breakdown of the rotational symmetry breaking of X is shown, using the N−1 → 0 extrapolated values from
each parameter run. A quadratic (fit) extrapolation is used to extract the ε → 0 limits. An interesting effect is that, while
the fitted polynomials extrapolate to separate values, the corresponding ε > 0 simulations seem to converge to one value.
This seems to indicate that if the original model were to be simulated, the SO4 spacetime symmetry would be preserved.
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8.2. Euclidean IKKT matrix model with dimX = 6
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fermion, showing the
surviving symmetry in the original model in the Gaussian matrix model (8.1.1) [18].

Finally, figure 8.1.6 the ε→ 0 extrapolated results are collected with respect to mfermion, and by extrapolation, an estimate
for the original undeformed model is obtained. Towards the bosonic limit, SO4 seems to be restored, while towards the
original model, SO2 appears to be the maximal surviving symmetry, with the rest of spacetime extends shrunk to a smaller
scale.

In particular, approximately,
ρ1 = ρ2 = 0.33, ρ3 = 0.21 and ρ4 = 0.13, (8.1.3)

which results relatively agree with the estimates (8.1.2) by the Gaussian Expansion Method on the SO2 part of the SO2×Z2

ansatz.

8.2. Euclidean IKKT matrix model with dimX = 6

Gaussian Expansion Method

For dimX = 6, dimU = 4, mfermion is recoded from a fermion mass matrix to a boson mass vector plus a self–dual 3–form
via the Γ matrices as

S0|fermion = mfermion|µψΓµψ +mfermion|µνξψΓµΓ
†
νΓξψ, with mfermion|µνξ = ımfermion|[µνξ], (8.2.1)

where the self–duality

mfermion|µνξ =
1

6
ıεµνξµ′ν′ξ′mfermion|µ′ν′ξ′ ,

manifests from the Weyl condition of ψ [74]. In this case the 6–dimensional IKKT bosonic term is used.

At this point it is important to elaborate the parameter counting of (8.2.1), as it is the most general form that can appear
in IKKT model variants. In the general case, the rank–1 mfermion always counts dimX parameters. The 3–form mfermion on
the other hand as a rank–3 tensor originally has (dimX )3 parameters. As a 3–form however,

mfermion|[µνξ] = mfermion|µνξ,

which means that the independent components come down to(︃
dimX

3

)︃
=

(dimX )!
3!(dimX − 3)!

=
1

6
dimX (dimX − 1)(dimX − 2),

which is further trimmed–down by the aforementioned self–duality in the case of dimX = 6 by 2, resulting in 6+6+10 total
parametric freedom of S0.2

2For dimX = 6,
1

2

1

6
dimX (dimX − 1)(dimX − 2) = 10.
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8. The Euclidean IKKT matrix model

In [22], ansätze SO6 → SOD with D = 5, D = 4 and D = 3 were explored, with the most prominent examples given
in table 8.2.1. The corresponding free energy analysis shows a preference for SO3 surviving, implying the spontaneous
SO6 → SO3 symmetry breaking.

f ⟨ρ1⟩ ⟨ρ2⟩ ⟨ρ3⟩ ⟨ρ4⟩ ⟨ρ5⟩ ⟨ρ6⟩

SO5 −1.70472 0.18993 0.18993 0.18993 0.18993 0.18993 0.05037

SO4 −1.79599 0.22999 0.22999 0.22999 0.22999 0.04190 0.03816

SO4 × Z2 −1.78072 0.22365 0.22365 0.22365 0.22365 0.05952 0.04589

SO3 × Z3 −1.81743 0.30457 0.30457 0.30457 0.02990 0.02990 0.02650

SO3 × SO2 −1.84330 0.30497 0.30497 0.30497 0.02673 0.02673 0.03162

Table 8.2.1.: List of broken symmetries explored by GEM on dimX = 6 IKKT model in [22]. Identical values are grouped
together to outline the surviving symmetries after the spontaneous symmetry breaking.

Following is a breakdown of the parametric freedom of fundamental ansätze.

SO5 ansatz (3 parameters)

mboson|1 = mboson|2 = mboson|3 = mboson|4 = mboson|5. (2 parameters including mboson|6)
mfermion|1 = mfermion|2 = mfermion|3 = mfermion|4 = mfermion|5 = 0. (1 parameters including mfermion|6)
∀µ, ν, ξ ∈ NdimX , mfermion|µνξ = 0.

SO4 ansatz (5 parameters)

mboson|1 = mboson|2 = mboson|3 = mboson|4. (3 parameters including mboson|5, mboson|6)
mfermion|1 = mfermion|2 = mfermion|3 = mfermion|4 = 0. (2 parameters including mfermion|5, mfermion|6)
∀µ, ν, ξ ∈ NdimX , mfermion|µνξ = 0.

SO3 ansatz (8 parameters)

mboson|1 = mboson|2 = mboson|3. (4 parameters including mboson|4, mboson|5, mboson|6)
mfermion|1 = mfermion|2 = mfermion|3 = 0. (3 parameters including mfermion|4, mfermion|5, mfermion|6)
∀µ, ν, ξ ∈ NdimX , mfermion|µνξ = 0 except for:

• mfermion|123 = −ımfermion|456. (1 parameters)

SO2 ansatz (13 parameters)

mboson|1 = mboson|2. (5 parameters including mboson|3, mboson|4, mboson|5, mboson|6)
mfermion|1 = mfermion|2 = 0. (4 parameters including mfermion|3, mfermion|4, mfermion|5, mfermion|6)
∀µ, ν, ξ ∈ NdimX , mfermion|µνξ = 0 except for:

• mfermion|123 = −ımfermion|456, (1 parameters)

• mfermion|124 = −ımfermion|356, (1 parameters)

• mfermion|125 = −ımfermion|346, (1 parameters)

• mfermion|126 = −ımfermion|345. (1 parameters)
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8.2. Euclidean IKKT matrix model with dimX = 6

Complex Langevin Method

As part of this study, the next step was taken, by studying the 6–dimensional Euclidean IKKT model, which, based
on the GEM result presented here [74], the spontaneous symmetry breaking is expected to be SO6 −→ SO3. In [14],
mboson = (2−1, 2−1, 20, 2+1, 2+2, 2+3) and γ = Γ6 were chosen. The rationale behind having a manifest minimal rotational
symmetry is because it is unlikely to observe symmetry breaking beyond SO2, based on the argument about degenerate
configurations presented in section §7.2. Complex Langevin Method (CLM). Technically, the lowest expected surviving sym-
metry is in fact SO3 based on that argument, however in order to observe it using Monte Carlo and the CLM, and assuming
it is one of the possibilities (and in fact it is), SO2 only is preserved in the symmetry breaking term ∆Sboson.
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Figure 8.2.1.: Three sets of runs with varying ε and increasing mfermion that show how reducing both leads to problematic
drift fall–off for the 6–dimensional IKKT matrix model [14].

In figure 8.2.1 the effect of both vanishing ε and mfermion on the drift of the Langevin (stochastic) process A is shown. While
the effect of mfermion → 0 relates to the singularity of the drift, it appears low values of ε impede convergence of the process
A as well.
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Figure 8.2.2.: A case for specific mfermion in the deformed 6–dimensional IKKT matrix model, that shows that vanishing
symmetry order parameter ε has a detrimental effect on the eigenvalue distribution of the fermion matrix as it
is affected by the Langevin process A [14].

In figure 8.2.2, the effect of vanishing ε on the eigenvalue spectrum of the (deformed) fermion matrix is apparent as well,
relating to the effect of ε→ 0 has on the drift norm.

In figure 8.2.3 an example is shown where results for finite matrix sizes N are once more linearly extrapolated to the limit
N−1 → 0. This time however, since SO2 is expected to minimally survive, the respective observables ⟨λ1⟩ and ⟨λ2⟩ may be
grouped together for more statistics on a unified observable (⟨λ1⟩+ ⟨λ2⟩)/2 or

ρ1+2 =
ρ1 + ρ2

2
.
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Figure 8.2.4.: The ε → 0 limit with quadratic extrapolation β2ε
2 + β1ε + β0 showing the symmetry breaking in the 6–

dimensional IKKT matrix model, as the effect of ∆Sboson is reduced. As the fermion deformation ∆Sfermion
starts to vanish, the extends of spacetime observables start to separate [14].

In figure 8.2.4, a breakdown of the rotational symmetry of X is shown, using the N−1 → 0 extrapolated values from each
parameter run. A quadratic (fit) extrapolation is used to extract the ε→ 0 limits. The near–bosonic model mfermion = 1000
restores SO6 at ε→ 0. As mfermion becomes smaller, the restored symmetry becomes lesser; for 1.40 it is SO5 that survives,
while for 0.60 it is SO3 that is restored, with all other extends of spacetime taking lower values than the three dominant
extends.

Finally, in figure 8.2.5 the ε → 0 extrapolated results are collected with respect to mfermion. It is clear that ρ1+2 and ρ3
converge to the value predicted by the GEM analysis of the 6–dimensional model, while ρ4, ρ5 and ρ6 converge to the lower
one [22]. Specifically, said values are

ρ1(mfermion → 0) = ρ2(mfermion → 0) = ρ3(mfermion → 0) = 0.30,

ρ4(mfermion → 0) = ρ5(mfermion → 0) = ρ6(mfermion → 0) = 0.035.
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8.3. Euclidean IKKT matrix model with dimX = 10

Grouping the observables are such, and using the same extrapolation scheme as in the original observables, the projected
values obtained by the complex Langevin simulation are a little higher, [14],

ρ1(mfermion → 0) = ρ2(mfermion → 0) = ρ3(mfermion → 0) = 0.33,

ρ4(mfermion → 0) = ρ5(mfermion → 0) = ρ6(mfermion → 0) = 0.046.
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fermion, showing the
surviving symmetry in the original 6–dimensional IKKT matrix model. The points at mfermion = 0 represent
the GEM results [14].

8.3. Euclidean IKKT matrix model with dimX = 10

Gaussian Expansion Method

For dimX = 10, dimU = 16, mfermion is recoded from a fermion mass matrix to a (non self–dual) 3–form only (in contrast
to dimX = 6) via the Γ matrices as

S0|fermion = mfermion|µνξψΓµΓ
†
νΓξψ, with mfermion|µνξ = ımfermion|[µνξ], (8.3.1)

In this case, only the 3–form symmetry mfermion|[µνξ] = mfermion|µνξ affects parameter counting, yielding 120 free parameters
for mfermion. For mboson it is 10 as expected.

In [23], ansätze SO10 → SOD with 2 ≤ D ≤ 7 were explored, where the parameter freedom of each ansatz was restricted
to 5. This is possible ∀D by imposing extra symmetries in the form of coordinate permutations in the remaining directions
corresponding to the broken symmetry, with the only requirement that the resulting group is a subgroup of the original
SO10 symmetry group. The corresponding free energy analysis shows a preference for broken symmetries with SO3 surviving,
implying the spontaneous SO10 → SO3 breaking.

Complex Langevin

The next and final step in studying the Euclidean IKKT model is the physical 10–dimensional model in which, based on the
GEM result, the spontaneous symmetry breaking is expected to be SO10 −→ SO3.

For the 10–dimensional model, γ = ıΓ8Γ
†
9Γ10 was chosen. This type of deformation manifestly breaks SO10 down to SO7.

As the fermion deformation term contains the last of the gamma matrices, and the observables λ are ordered before taking
the expectation value ⟨λ⟩, the part involved in the spontaneous symmetry breaking is SO7.

In [15],

mboson = (2−1, 2−1, 2−1, 20, 2+1, 2+2, 2+3, 2+3, 2+3, 2+3) for mfermion = 3 and

mboson = (2−1, 2−1, 20, 2+1, 2+2, 2+3, 2+3, 2+3, 2+3, 2+3) for mfermion < 3
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8. The Euclidean IKKT matrix model

were chosen respectively. As shown by the 4–dimensional and 6–dimensional cases respectively, greater deformation fermion
mass mfermion leads to higher surviving symmetry at the extrapolated ε → 0 limit, therefore for mfermion ≥ 3, the breaking
terms were grouped accordingly to maximize statistics and focus on the dimensionality of the expected symmetry breaking.
For lower mfermion values, the minimal SO2 is expected as discussed in section §7.2. Complex Langevin Method (CLM) [19].
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Figure 8.3.2.: The ε→ 0 limit with quadratic extrapolation β2ε2+β1ε+β0 showing the symmetry breaking mechanism in the
10–dimensional IKKT matrix model as the effect of ∆Sboson is reduced. As the fermion deformation ∆Sfermion
starts to vanish, the extends of spacetime observables start to separate [15].

The corresponding grouping of observables is

ρ1 + ρ2 + ρ3
3

, ρ4, ρ5, ρ6, ρ7,
ρ8 + ρ9 + ρ10

3
for mfermion = 3, and

ρ1 + ρ2
2

, ρ3, ρ4, ρ5,
ρ6 + ρ7

2
,
ρ8 + ρ9 + ρ10

3
for mfermion < 3.

The same techniques used in the lower–dimensional models were used here, namely, monitoring the drift norm and discarding
runs when the drift fall-off is not subexponential, gauge cooling and the ordered limit N →∞, ε→∞ and mfermion → 0.

In figure 8.3.1, an example with mfermion < 3 is shown, where results for finite matrix sizes N are quadratically extrapolated
to the limit N−1 → 0, i.e. like α2N

−2 + α1N
−1 + α0.
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8.3. Euclidean IKKT matrix model with dimX = 10

In figure 8.3.2, a breakdown of the rotational symmetry of X is shown, using the N−1 → 0 extrapolated values from each
parameter run. A quadratic (fit) extrapolation is used to extract the ε → 0 limits. At mfermion = 3, the manifestly broken
SO7 remains intact. As mfermion is reduced, the simulations themselves start to collapse back to a fully restored SO10

symmetry. Recall that the manifest SO10 → SO7 breaking is due to the fermion mass deformation, so this separation
vanishes with mfermion close to 0. Accounting only for the simulations before the aforementioned “collapse”, the quadratic
fits and corresponding extrapolations lead to a gradual separation of the observed extents in spacetime, with mfermion = 0.7
exhibiting a restoration of a dominant SO3 over all other smaller extents. This is in agreement to the GEM SO10 → SO3

result.
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9. The Lorentzian IKKT matrix model

When studying the Euclidean IKKT model,1 it has been shown with both the analytical GEM and the numerical CLM
methods that the rotational symmetry SO10 breaks down to SO3 instead of SO4, and with the dominant spacetime extents
being finite instead of infinite. This prompted the study of the Lorentzian IKKT model.

On the other hand, the Lorentzian IKKT model presents a few challenges in itself. By construction, all Monte Carlo studies
of quantum field theories rely on the Wick–rotated Euclidean counterparts for a well–defined–as–a–probability Boltzmann
factor exp(−S) in contrast to exp ıS. It has been shown in (but not restricted to) the Euclidean IKKT model, there are cases
where even then, the action is complex and the corresponding Boltzmann factor is ill–defined as a probability. As the CLM
offers an alternative stochastic process for sampling effectively the configuration space of such a theory, models with their
original metric signature may become approachable again, as the Boltzmann factor they defined has a strong complex phase
by construction.

However, the Boltzmann factor complex phase is not the only concern. Returning to the Lorentzian IKKT model, its action
is unbounded from below, leading to divergences in the partition function [24, 25, 26, 27].

In this chapter, the primary technical elements of the Lorentzian IKKT CLM study are presented, and relevant simulation
results included.

A note on index notation: greek indices starting from µ, ν, . . . refer to all spacetime components, which are raised/lowered
by the Lorentzian metric η. Latin indices starting from i, j, k. . . . refer to space components only which are contracted by the
positive definite Kronecker δ and therefore positioning will be fixed in upper. Time index is labeled with 0. Matrix operator
abbreviations like that of the trace will be used for the internal degrees of freedom only, which are indexed with latin starting
from a, b, c, d, . . ..

9.1. Background

Gauge fixing in the Lorentzian IKKT matrix model

The band–diagonal gauge fixing

It has been shown in section §7.2. Complex Langevin Method (CLM), that the bosonic matrices of the Euclidean IKKT
model have an internal SUN symmetry that can be exploited to modify the configuration search path during Monte Carlo
simulations. For instance, in the Euclidean IKKT, the symmetry was used to search for a configuration that has minimal
deviation from hermiticity, — a process labeled as gauge cooling [41, 42, 44] — to prevent the search path from spending too
many simulation steps in the antihermitian direction..

An alternative gauge fixing stems from the idea of approximating simultaneous diagonalization of all bosonic matrices [7, 8].
As explained in section §6.3. Matrix models, the fundamental interpretation of the matrix model through Connes’ operator
approach to geometry [4], is dynamically generating spacetime via the N × N bosonic matrices representing N spacetime
points. If all bosonic matrices were diagonalizable, this would result in a classical geometry with their eigenvalues serving
as the spacetime points. In the case of the IKKT matrix model however (and in general), they are not, leading to a fuzzy
geometry where not all dimX coordinates of a spacetime point can be known simultaneously.

Much like in gauge cooling, where in the context of the CLM, hermiticity is approximated via the SUN internal matrix
symmetry, the same can be done towards approximating simultaneous diagonalization, by bringing all dimX bosonic matrices

1See chapter 7. Methodology and references therein for more.
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9. The Lorentzian IKKT matrix model

to as thin a band–diagonal structure as possible. [6] devised an SOdimX−1,1 (Lorentz) and SUN symmetric norm

∆2 = N−1
∑︂N

n=1
(AµAµ)nn − max

U∈SUN

(︂
N−1

∑︂N

n=1
(UAµU

†)nn(UAµU
†)nn

)︂
measuring proximity to simultaneous diagonalization of all bosonic matrices, also used in [7, 8].

time relevant to matrix block 

Figure 9.1.1.: Two approaches of matching time with space, one matching all spatial blocks that contain the indices of a
particular time and one matching all times with indices of a particular spatial block.

The time matrix A0

As demonstrated in section §7.2. Complex Langevin Method (CLM), the SUN — becoming SLN after complexification —
gauge symmetry of the N–size Euclidean IKKT matrix model is exploited to select a gauge that minimized the hermiticity
deviation of the bosonic matrices all over the CLM configuration path. The Lorentzian IKKT model presents another
possibility. The fundamental aspect of the non–commutative geometry of the IKKT is that ∀µ ∈ ZdimX , Aµ are pair–wise
not simultaneously diagonalizable, which also translates to the fact that the coordinates diagonalizing one of them always
leaves the others non–diagonal. Since time is special in the Lorentzian IKKT model in that it has a different sign in the
signature, it becomes apparent that the gauge can be fixed by diagonalizing the time bosonic matrix,

A0 = diagα =

⎛⎜⎜⎜⎜⎜⎜⎝
α1 · · ·

α2 · · ·
...

...
. . .

...

· · · αN

⎞⎟⎟⎟⎟⎟⎟⎠
Reordering is allowed within a gauge symmetry, therefore the eigenvalues of A0 are chosen in ascending order, resembling
time advance.

In this gauge, the spatial bosonic matrices are generally expected to have a band–diagonal structure of block size Nblock ∈ NN

[76]. In practice what is observed in simulations is that the structure is approximately band–diagonal, with off–band-diagonal
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9.1. Background

elements being below a practical threshold, which in turn defines Nblock. This allows the interpretation of a possible time
and space matching, two mainstream possibilities of which are shown in figure 9.1.1, the latter of which is applied in [24, 25,
26, 27] as well as in our current work.

Assuming a fixed block size Nblock, let ∀n ∈ Nn−nblock+1, Ān be the nth block of a band–diagonal bosonic matrix A,2 i.e.
such that ∀ablock, bblock ∈ Nnblock ,

Ān|ablock,bblock = An+ablock,n+bblock .

The time matching such a block is defined as the average time indexed by the block,

ᾱn = N−1
block

∑︂Nblock

nblock=1
αn+nblock ,

as
tn =

∑︂n

i=1
|∆ᾱi|, ∆ᾱi = ᾱi+1 − ᾱi (9.1.1)

The (s, k) IKKT space

Wick rotation

When studying quantum field theories via Monte Carlo methods that rely on the Boltzmann factor of the partition function,
Wick rotation to a Euclidean version may be necessary, because in the original theory, said partition function is formally

Zlorentzian =

∫︂
exp(ıS) becoming Zeuclidean =

∫︂
exp(−S),

after a Wick rotation to imaginary time.

In [77] the relationship of the two versions of the IKKT model are first explored simplified down to the pure bosonic model
to reduce computational complexity, to allow an exhaustive exploration of the theory space. The bosonic action

Sboson =
1

4
N trT×Σ F

µνFµν = N

(︃
1

4
tr(FijFij)−

1

2
tr(F0iF0i)

)︃
with Fµν = ı[Aµ|Aν ]

is real, therefore the corresponding Boltzmann factor is a pure complex phase. To circumvent the problem, a double–
parametric extension of the Wick rotation has been introduced in [48],

Sboson = −ıNβ exp
(︃
ıs
π

2

)︃(︃
1

4
tr(FijFij)−

1

2
exp(−ıkπ) tr(F0iF0i)

)︃
, (9.1.2)

such that the partition function is written by the corresponding Euclidean convention

Z =

∫︂
dA exp(−Sboson)

such that it formally has the form of a well–defined Boltzmann factor (ignoring the fact that Sboson may be complex. β
contains the global coupling constant of the model; usually β = g−2N−1. Parameter s corresponds to a Wick rotation in the
worldsheet while k corresponds to a Wick rotation in the target space.3

(s, k) = (0, 0) corresponds to the Lorentzian IKKT matrix model while (s, k) = (1, 1) corresponds to the Euclidean one. This
is evident by the form of the Wick rotated Ãµ, ∀µ,

A0 = exp

(︃
ı(s− 4k)

π

8

)︃
Ã0 and ∀i, Ai = exp

(︃
ıs
π

8

)︃
Ãi.

In general s and k define a parametric theory space with the Lorentzian and Euclidean being special cases. In figure 9.1.2,
the full phase diagram for s and k is shown, along with domains that lead to ill–defined models.
2Suppressing the bosonic index µ here for simplicity.
3While the model is zero–volume, it carries the spacetime signature of the corresponding type IIB superstring theory (or the corresponding super

Yang–Mills theory). It is the spacetime signature on the IKKT matrix model that is affected by k.
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9. The Lorentzian IKKT matrix model

non-continuous time

non-commutative space

non-commutative space
non--continuous time

Lorentzian

Euclidean

exploration domain

***

***
Sang-Woo Kim, Jun Nishimura, and Asato Tsuchiya.
Expanding (3+1)-dimensional universe
from a Lorentzian matrix model
for superstring theory in (9+1)-dimensions.
Physical Review Letters, 108(1), 2012.

flagship models

a Euclidean-to-Lorentzian search path

Figure 9.1.2.: The phase diagram of the parameter s and k space prescribing the Wick rotation of the IKKT model [48]. The
Wick rotation is periodic beyond the region shown.

The decisive factor is the sign of ℜS. Let the Lorentzian IKKT action be

Sboson = Stime + Sspace ∝
1

2
β exp

(︃
ı(s+ 1− 2k)

π

2

)︃
tr(F0iF0i) +

1

4
Nβ exp

(︃
ı(s− 1)

π

2

)︃
tr(FijFij).

Sspace promotes space non–commutativity, while Stime promotes a more band–diagonal form for A.

According to (4.4.5), ℜStime ≥ 0 becomes

cos

(︃
|s− 1|π

2

)︃
≥ 0 means |s− 1|π

2
≤ π

2
or 0 ≤ s ≤ 2,

and ℜSspace ≥ 0 becomes

cos

(︃
|s+ 1− 2k|π

2

)︃
≥ 0 means |s+ 1− 2k|π

2
≤ π

2
or

1

2
s ≤ k ≤ 1

2
s+ 1.
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9.1. Background

The real part signs are given in the table below based on the distinct phase of each term in the action:

s condition k condition ℜStime ℜSspace

0 ≤ s ≤ +1 s/2 ≤ k ≤ s/2 + 1 + +

0 ≤ s ≤ +1 s/2− 1 ≤ k ≤ s/2 + −

−1 ≤ s ≤ 0 s/2 ≤ k ≤ s/2 + 1 − +

−1 ≤ s ≤ 0 s/2− 1 ≤ k ≤ s/2 − −

In the single–parametric theory subspace defined by s = k = u, the Wick rotation takes the form

A0 = exp

(︃
− ıu3π

8

)︃
Ã0 and ∀i, Ai = exp

(︃
1

8
ıπu

)︃
Ãi, (9.1.3)

with F̃µν = ı[Ãµ|Ãν ]. In this subspace, u = 0 corresponds to the Lorentzian version and u = 1 to the Euclidean one. Let

λ̃µ = N−1 tr Ã
2

µ

By (9.1.3),

⟨λ0⟩ = exp

(︃
− ıu3π

8

)︃
⟨λ̃0⟩ and ⟨λi⟩ = exp

(︃
ıu
π

8

)︃
⟨λ̃i⟩. (9.1.4)

The general concept behind this dual parametrization is to allow getting results for the Lorentzian model (at s = 0 and
k = 0), by simulating variants in the dual parameter space approaching the Lorentzian model along a path starting from a
well defined variant, like the Euclidean model, as was done in [77].

The real time constraint

In order to obtain real time in the Lorentzian IKKT matrix model,4 the

αN =
√
κ ∈ C

constraint is imposed via an even polynomial action deformation

∆Sα =
1

4
γα(αN −

√
κ)4,

which, however, breaks (9.1.3) and consequently (9.1.4) as well. This constraint stems from the infrared cutoff

λ0 = κ and ∀i, λi = 1,

introduced to moderate the unboundedness of the Lorentzian IKKT bosonic action [78].

The logarithmic time

The complex Langevin method is applied to this model as is founded in chapter 4. Stochastic Quantization and applied the
same way as in the Euclidean version, as in chapter 7. Methodology.

The ascending α sequence is encoded by a logarithmic time–increment sequence τ as

αb =
∑︂

c<b
exp τc,

4In the sense that the Euclidean IKKT matrix model has imaginary time.
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9. The Lorentzian IKKT matrix model

with Jacobian
∂αb

∂τa
=

{︄
exp τa = αa a < b ∈ N
0 a ≥ b ∈ N

,

that defines the τ–derivative
∂

∂τa
=
∑︂

b

∂αb

∂τa

∂

∂αb
= αa

∑︂
b>a

∂

∂αb
.

Of interest is the τ–derivative of an α–difference,

∂

∂τa
(αb − αc) =

⎧⎪⎨⎪⎩
+αa c ≤ a < b

0 otherwise: a < b, c or b, c ≤ a
−αa b ≤ a < c

,

or
∂

∂τa
(αb − αc) = sign(αb − αc)

{︄
αa c ≤ a < b or b ≤ a < c

0 a < b, c or b, c ≤ a
.

Since sign(αb − αc)
2 = 1, the τ–derivative of the absolute α–difference is

∂

∂τa
|αb − αc| = sign(αb − αc)

∂

∂τa
(αb − αc) =

{︄
αa c ≤ a < b or b ≤ a < c

0 a < b, c or b, c ≤ a
.

These formulas are essential in calculating the drift term of the complex Langevin equations of the bosonic Lorentzian IKKT
model.

The bosonic action in the time gauge5

The various quantities of Sboson are calculated here on the assumption of a diagonal A0 = diagα matrix;6 in index notation
it is

A0
ab = αaδab = δabαb.

Let the bosonic squared terms be,

Cij = AiAj or Cij
ab =

∑︂
c
Ai

acA
j
cb and D =

∑︂
i
Cii or Dab =

∑︂
i
Cii

ab.

The bosonic matrix commutators with time components are,

[A0|Ai]ab = C0i
ab − C0i

ba =
∑︂

c
A0

acA
i
cb −

∑︂
c
Ai

acA
0
cb =

∑︂
c
αaδacA

i
cb −

∑︂
c
Ai

acδcbαb = αaA
i
ab −Ai

abαb = (αa − αb)A
i
ab.

The bosonic Jacobi terms with time components are,

[A0|[A0|Ai]]ab =
∑︂

c
A0

ac[A
0|Ai]cb −

∑︂
c
[A0|Ai]acA

0
cb

=
∑︂

c
A0

ac(αc − αb)A
i
cb −

∑︂
c
(αa − αc)A

i
acA

0
cb =

∑︂
c
αaδac(αc − αb)A

i
cb −

∑︂
c
(αa − αc)A

i
acδabαb

= αa(αa − αb)A
i
ab − (αa − αb)A

i
abαb = (αa − αb)

2Ai
ab.

The bosonic moment of inertia with time components is,∑︂
i
trF 0iF 0i =

∑︂
i

∑︂
a

∑︂
b
F 0i
abF

0i
ba = −

∑︂
i

∑︂
a

∑︂
b
[A0|Ai]ab[A

0|Ai]ba

= −
∑︂

i

∑︂
a

∑︂
b
(αa − αb)A

i
ab(αb − αa)A

i
ba =

∑︂
i

∑︂
a

∑︂
b
(αa − αb)

2Ai
abA

i
ba. (9.1.5)

5Note that, in this subsection only, for the range of calculations in the index–less notation, derivation with the transpose is implied instead of
being explicitely stated, i.e. ∀A square matrix,

∂

∂A

⃓⃓⃓⃓
ab

=
∂

∂Aba
,

as this is the only derivation used in the calculations, and cluttered notation is avoided this way.
6For index notational clarity, the spacetime indices will be rendered raised in this subsection.
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9.1. Background

The bosonic Jacobi terms with space components are,∑︂
j
[Aj |[Aj |Ai]] =

∑︂
j
(Aj [Aj |Ai]− [Aj |Ai]Aj) =

∑︂
j
(Aj(AjAi −AiAj)− (AjAi −AiAj)Aj)

=
∑︂

j
(AjAjAi −AjAiAj −AjAiAj +AiAjAj) = DAi −

∑︂
j
CijAj +AiD −

∑︂
j
AjCji.

The bosonic moment of inertia with space components is,∑︂
i

∑︂
j
trF ijF ij = tr

∑︂
i

∑︂
j
[Ai|Aj ][Ai|Aj ] = tr

∑︂
i

∑︂
j
(AiAj −AjAi)(AiAj −AjAi)

= tr
∑︂

i

∑︂
j
(AiAjAiAj −AiAjAjAi −AjAiAiAj +AjAiAjAi)

= tr
(︂∑︂

i

∑︂
j
CijCij −

∑︂
i
AiDAi −

∑︂
j
AjDAj +

∑︂
i

∑︂
j
CjiCji

)︂
= 2 tr

∑︂
i

(︂∑︂
j
CijCij −AiDAi

)︂
= 2
(︂∑︂

i

∑︂
j
trCijCij − trDD

)︂
, (9.1.6)

because matrices in a product can cycle when traced.

Let the function
∆(α) =

∏︂
a≤N

∏︂
b<a

(αa − αb)

accumulate all forward time differences. Then the effective action of the model reads

Seffective = Sboson −
∑︂

a≤N

∑︂
b̸=a

log |αa − αb| −
∑︂

a<N
τa = Sboson − 2 log∆(α)−

∑︂
a<N

τa.

Time drift

The time derivative of time component (9.1.5) is

∂

∂τa
tr[A0|Ai]2 = − ∂

∂τa

∑︂
b

∑︂
c
(αb − αc)

2Ai
bcA

i
cb = −

∑︂
b

∑︂
c
Ai

bcA
i
cb

∂

∂τa
(αb − αc)

2

= −2
∑︂

b

∑︂
c
(αb − αc)A

i
bcA

i
cb

∂

∂τa
(αb − αc)

= −2αa

∑︂
b>a

∑︂
c≤a

(αb − αc)A
i
bcA

i
cb + 2αa

∑︂
b≤a

∑︂
c<a

(αb − αc)A
i
bcA

i
cb

= −2αa

∑︂
b>a

∑︂
c≤a

(αb − αc)A
i
bcA

i
cb + 2αa

∑︂
c≤a

∑︂
b<a

(αc − αb)A
i
cbA

i
bc

= −4αa

∑︂
b>a

∑︂
c≤a

(αb − αc)A
i
bcA

i
cb,

therefore
∂

∂τa
Sboson = 2ıNβ exp

(︃
ıs
π

2

)︃
exp(−ıkπ)αa

∑︂
i

∑︂
b>a

∑︂
c≤a

(αb − αc)A
i
bcA

i
cb.

The effective action volume term is
log∆(α) =

1

2

∑︂
a

∑︂
b ̸=a

log |αa − αb|.

Since c ≤ a < b or b ≤ a < c implies b ̸= c, while c < b implies ac ≤ ab,

∂

∂τa
log∆(α) =

1

2

∑︂
b

∑︂
c̸=b

∂

∂τa
log |αb − αc| =

∑︂
b

∑︂
c̸=b

1

|αb − αc|
∂

∂τa
|αb − αc|

= αa

∑︂
b>a

∑︂
c≤a

1

|αb − αc|
+ αa

∑︂
b≤a

∑︂
c<a

1

|αb − αc|

= αa

∑︂
b>a

∑︂
c≤a

1

|αb − αc|
+ αa

∑︂
c≤a

∑︂
b<a

1

|αc − αb|

= 2αa

∑︂
b>a

∑︂
c≤a

1

αb − αc
.
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9. The Lorentzian IKKT matrix model

Finally,
∂

∂τa

∑︂
b<N

τb = 1− δaN .

The effective action time derivative is,

∂

∂τa
Seffective = Nβ exp

(︃
ı
π

2
(2 + 1− 2k)

)︃
αa

(︃∑︂
b>a

∑︂
c≤a

(︃
(αb − αc)

∑︂
i
Ai

bcA
i
cb −

2

αb − αc

)︃
− 1 + δaN

)︃
,

Space drift9.1.3

The space derivative of time component (9.1.5) is

− ∂

∂Ai
ba

∑︂
j
tr[A0|Aj ]2 = 2

∑︂
j

∑︂
c

∑︂
d
(αc − αd)

2 ∂A
j
cd

∂Ai
ba

Aj
dc = 2

∑︂
j

∑︂
c

∑︂
d
(αc − αd)

2δijδbcδadA
j
dc = 2(αa − αb)

2Ai
ab

or
− ∂

∂Ai

∑︂
j
tr[A0|Aj ]2 = 2[A0|[A0|Ai]].

The space derivative of space component (9.1.6) is,7

∂Cjk
cd

∂Ai
ba

=
∑︂

e

(︃
∂Aj

ce

∂Ai
ba

Ak
ed +Aj

ce

∂Ak
ed

∂Ai
ba

)︃
=
∑︂

e
(δijδbcδaeA

k
ed +Aj

ceδikδbeδad) = δijδbcA
k
ad +Aj

cbδikδad,

and

∑︂
j

∑︂
k

∑︂
c

∑︂
d

∂Cjk
cdC

jk
dc

∂Ai
ba

=
∑︂

j

∑︂
k

∑︂
c

∑︂
d

(︃
∂Cjk

cd

∂Ai
ba

Cjk
dc + Cjk

cd

∂Cjk
dc

∂Ai
ba

)︃
=
∑︂

j

∑︂
k

∑︂
c

∑︂
d
((δijδbcA

k
ad +Aj

cbδikδad)C
jk
dc + Cjk

cd (δijδbdA
k
ac +Aj

dbδikδac))

=
∑︂

j

∑︂
k

∑︂
c

∑︂
d
(δijδbcA

k
adC

jk
dc +Aj

cbδikδadC
jk
dc + δijδbdA

k
acC

jk
cd +Aj

dbδikδacC
jk
cd )

=
∑︂

k

∑︂
d
Ak

adC
ik
db +

∑︂
j

∑︂
c
Cji

acA
j
cb +

∑︂
k

∑︂
c
Ak

acC
ik
cb +

∑︂
j

∑︂
d
Cji

adA
j
db

= 2
∑︂

j

∑︂
c
(Aj

acC
ij
cb + Cji

acA
j
cb) = 2

∑︂
j

∑︂
c
(Aj

acC
ij
cb + Cji

acA
j
cb),

or
∂

∂Ai
trCjkCjk = 2

∑︂
j
(CijAj +AjCji),

7In general, for a matrix product ABC for example,

∂

∂Bji
tr(ABC) =

∂

∂Bji

∑︂
k

∑︂
l

∑︂
m

AklBlmCmk =
∑︂

k

∑︂
l

∑︂
m

Akl
∂Blm

∂Bji
Cmk =

∑︂
k

∑︂
l

∑︂
m

δimCmkAklδlj =
∑︂

k
CikAkj ,

or
∂

∂B
tr(ABC) = CA,

so derivating scalar functions of matrices reduces to scalar derivative operations with attention to product ordering when applicable. More
(trivial) examples include

∂

∂Bji
trB =

∂

∂Bji

∑︂
k
Bkk =

∑︂
k

∂

∂Bji
Bkk =

∑︂
k
δikδkj = δij or

∂

∂B
trB = 1,

or

∂

∂Bji
trBN =

∂

∂Bji

∑︂
k∈NN

BkNk1
Bk1k2

. . . BkN−1kN
= N

∑︂
k∈NN

∂BkNk1

∂Bji
Bk1k2

. . . BkN−1kN

= N
∑︂

k∈NN
δik1

Bk1k2
. . . BkN−1kN

δkN j = N
∑︂

k∈NN−2
Bik2

. . . BkN−1j or
∂

∂B
trBN = NBN−1.
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9.2. The Euclidean–Lorentzian IKKT matrix model correspondence

and
∂Dcd

∂Ai
ba

=
∑︂
j

∂Cjj
cd

∂Ai
ba

=
∑︂
j

(δijδbcA
j
ad +Aj

cbδijδad) = δbcA
i
ad +Ai

cbδad,

and∑︂
c

∑︂
d

∂DcdDdc

∂Ai
ba

=
∑︂

c

∑︂
d

(︃
∂Dcd

∂Ai
ba

Ddc +Dcd
∂Ddc

∂Ai
ba

)︃
=
∑︂

c

∑︂
d
((δbcA

i
ad +Ai

cbδad)Ddc +Dcd(δbdA
i
ac +Ai

dbδac)) =
∑︂

d
Ai

adDdb +
∑︂

c
Ai

cbDac +
∑︂

c
DcbA

i
ac +

∑︂
d
DadA

i
db

= 2
∑︂

c
(Ai

acDcb +DacA
i
cb),

or
∂

∂Ai
trDD = 2(DAi +AiD),

thus

∂

∂Ai

∑︂
j

∑︂
k
trF jkF jk =

∂

∂Ai
tr
∑︂

j

∑︂
k
[Aj , Ak]2 = 2

∂

∂Ai

(︂∑︂
j

∑︂
k
trCjkCjk − trDD

)︂
= 2
(︂
2
∑︂

j
(CijAj +AjCji)− 2(DAi +AiD)

)︂
= −4

(︂
DAi −

∑︂
j
CijAj +AiD −

∑︂
j
AjCji

)︂
= −4

∑︂
j
[Aj , [Aj , Ai]].

Finally,

∂Seffective

∂Ai
[A] = −ıNβ exp

(︃
ıs
π

2

)︃(︃
1

2
exp(−ıkπ) ∂

∂Ai

∑︂
j
tr[A0, Aj ]2 − 1

4

∂

∂Ai

∑︂
j

∑︂
k
tr[Aj , Ak]2

)︃
= −ıNβ exp

(︃
ıs
π

2

)︃(︃
1

2
exp(−ıkπ) ∂

∂Ai

∑︂
j
tr[A0, Aj ]2 − 1

4

∂

∂Ai

∑︂
j

∑︂
k
tr[Aj , Ak]2

)︃
= ıNβ exp

(︃
ıs
π

2

)︃
(exp(−ıkπ)[A0, [A0, Ai]]−

∑︂
j
[Aj , [Aj , Ai]]

)︃
.

Time constraint drift

The constraint term is,

V =
1

4
(αN −

√
κ)4γα.

The time derivative of constraint term is,

∂V

∂τa
=
∑︂

b

∂V

∂αb

∂αb

∂τa
= αa

∑︂
b>a

∂V

∂αb
= αa

∑︂
b>a

δbN (αN −
√
κ)3γα = αa(αN −

√
κ)3γα.

9.2. The Euclidean–Lorentzian IKKT matrix model correspondence

The pure bosonic case

From (9.1.3), the difference between Euclidean and Lorentzian observables linear in the bosonic matrices is a phase of −(3/8)π.
For time α in particular with the constraint turned off (γα = 0),

⟨αlorentzian⟩ = ⟨αeuclidean⟩ exp
(︃
− ı3π

8

)︃
.

Let ∀i ∈ NN−Nblock−1,
∆αi = αi+1 − αi

be the physical time step.
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9. The Lorentzian IKKT matrix model
I
m

Re

Figure 9.2.1.: Distribution of complex
time α, for various con-
strain settings (offset κ and
scale γα) of the Lorentzian
IKKT model with a time
cutoff αn =

√
κ. The line

corresponds to Euclidean
time [77].

For
⟨∆αi⟩ ∝ exp

(︃
− ı3π

8

)︃
,

the emergent time is Euclidean, while for ⟨∆αi⟩ ∈ R, the emergent time
is Lorentzian, i.e. corresponding to the proper metric signature. In fig-
ure 9.2.1, α is plotted for various constraint values of γα and κ. In all
settings the emergent time is Euclidean near times with low |α|, but be-
comes manifestly Lorentzian for large |α|.

An observable of space extent can be defined from the specific space extent
moment of inertia as

N−1
∑︂dimX−1

i=1
⟨trblock(Āi)

2⟩,

where
trblock =

∑︂Nblock

nblock=1
.

To obtain a time evolution of the space extent, we are limited by the block
size allowed by the non–commutativity of spacetime [77], so time (9.1.1) is
used and averaging on space block (band–diagonal) matrices is the maxi-
mum “resolution” that can be achieved when estimating time dependence,

R2(t) = NN−1
block

∑︂dimX−1

i=1
⟨λ̄i⟩ with Λ2 = |R2(0)| and θ(t) =

1

2
argR2(t). (9.2.1)

In [77] it was shown that spacetime of the Lorentzian bosonic IKKT matrix model exhibits a small expansion in times away
from t = 0. The main result is that without constraints the Euclidean and Lorentzian IKKT models are equivalent, while
introducing said constraints on time (αN =

√
κ), Lorentzian time emerges at the edges of time.

The extents of space

In [78] a detailed exploration of the extents of space in our simulations was done, using a modification of the spatial moment
of inertia tensor Λ defined ∀i, j as

Λ̄ij(t) = trblock(ℜĀi(t)ℜĀj(t))

where ∀A ∈MNC,

ℜA =
1

2
(A+A†) and ℑA =

1

2
(A−A†)

are the hermitian and antihermitian parts of A respectively, and once again, tracing is done on the block submatrices Ā of
A, to allow exploring the dependence of space expansion with time at the fuzzy resolution of the emergent non–commutative
spacetime. The reason behind regarding the hermitian part of the complex bosonic matrices only is that, the original
moment of inertia tensor (6.3.13) is non–holomorphic. However, due to gauge cooling intermixed in the simulation process,
the hermiticity norm of configurations is minimal. Also, as explained in section §7.2. Complex Langevin Method (CLM), an
alternative holomorphic method was used that could give identical results within statistical error.

The moment of inertia Λ is a matrix of its own with components that are block–traces of the spatial bosonic matrices. As a
matrix of its own, its space–only trace labeled as

R2(t) = ⟨trX/X0 Λ̄(t)⟩ =
∑︂dimX−1

i=1
⟨trblock(ℜĀi(t))

2⟩

in (9.2.1), where

trX/X0 =
∑︂dimX−1

i=1
.

In [78], we used a “detailed variant”

Q(t) =
∑︂dimX−1

i=1
(ℜĀi(t))

2,
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9.2. The Euclidean–Lorentzian IKKT matrix model correspondence

to measure the radial spread of space. Interestingly

trX/X0 Λ̄(t) = trblockQ(t),

but studying the distribution of the eigenvalues as event radii may give more information about how the space expands. In
figure 9.2.2 some examples are shown with different radial behavior. Some spacetimes show tendency to be singular at the
large N limit, while others show a more spread distribution of radial extends (eigenvalues of Q). The hermiticity norm h in
figure 9.2.2 is a normalized variant of the one used in our simulations, namely

h(A) = −∥Ai∥−2 tr(ℜĀi)
2 =
∥A†

i −Ai∥2

4∥Ai∥2
, ∥A∥ = tr(A†A), ∀A ∈MNC,

such that h = 0 corresponds to hermitian A and h = 1 corresponds to antihermitian A.

As is explained in [24, 48], terms [A0|Ai] favor close to diagonal structure, while terms [Ai|Aj ] favor non–commutativity
of the bosonic matrices, arguments that apply on their block versions as well. Maximal commutativity according to [24],
leads to a so–called Pauli–like structure of Āi configurations, which can be evident by the radial extent tensor Q; if only two
eigenvalues of Q separate from the rest, a Pauli–like structure is evident.

The parametric path chosen in [78] is for fixed k = 0 starting at s = −1 (figure 9.2.3). No spontaneous symmetry breaking
is observed.
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Figure 9.2.3.: Plots of the eigenvalues of Q respectively with respect to (block–averaged) time along the k = 0 path of the
Wick–rotated Lorentzian IKKT matrix model [78], with N = 128, β = 2.5 and κ = .8 and from left to right,
s = −.8, s = −.6 and s = 0 respectively.

The eigenvalue distribution of the moment of inertia Λ (figure 9.2.4) shows a uniform change through time t, hinting at no
spontaneous symmetry breaking either, which hints that it might be an effect of supersymmetry in the Lorentzian IKKT
model as well as it show to be in the Euclidean case [15, 79].
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Figure 9.2.4.: Plot of the eigenvalues of Λ respectively with respect to (block–averaged) time for the Lorentzian IKKT matrix
model (at s = 0 and k = 0) [78], with N = 128, β = 2.5 and κ = .8.
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(a) Model with s = −1.0000 and k = 0.0000, N = 128 with Nblock = 16, κ = 0.1300 and β = 2.
Only the largest 4 eigenvalues of Q are plotted.
This spacetime is expected to be singular in the N → ∞ limit, as some of the eigenvalues of the radial expansion tensor Q are orders of
magnitute distinct from the rest. Pauli–like structure is evident here.
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(b) Model with s = 0.0076 and k = 0.5038, N = 128 with Nblock = 16, κ = 0.0037 and β = 32.
Only the largest 8 eigenvalues of Q are plotted.
This spacetime is expected to be less singular than its s = −1 and k = 0 counterpart in the N → ∞ limit, as the eigenvalues of the radial
expansion tensor Q have more gradual differences. Departure from the Pauli-like structure is evident.
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(c) Model with s = 0.0118 and k = 0.5059, N = 192 with Nblock = 24, κ = 0.0044 and β = 64.
Only the largest 8 eigenvalues of Q are plotted.
This spacetime is a further improvement in the N → ∞ limit, as the eigenvalues of the radial expansion tensor Q are even more spread out.The
departure from the Pauli-like structure is more evident here.

Figure 9.2.2.: Plots (logarithmic) of the radial R, the eigenvalues of the moment of inertia Λ and the radial extend tensor Q
for one thermalized configuration A (no expectation value) respectively with respect to (block–averaged) time
[48], for various settings of the dimX = 6 bosonic Lorentzian IKKT matrix model (9.1.2).
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9.2. The Euclidean–Lorentzian IKKT matrix model correspondence

Lorentz–invariant mass term

It is apparent from the previous results that the introduction of constraints induced a dynamical signature change in the
emergent spacetime, near time t = 0, from Euclidean to Lorentzian. In [49], a new Lorentz-invariant term scaled by γ is
introduced in the pure bosonic action (9.1.2) in further exploring the dynamic emergence of a Lorentzian spacetime.,

Smass = −
1

2
ıNγ exp

(︃
ıs
π

4

)︃(︃
exp

(︃
− ıkπ

)︃
tr(A0A0)− tr(AiAi)

)︃
,

where the s and k dependence stems from the derived wick rotation (9.1.3), where the tilde notation is omitted for simplicity,
since we always refer to the Wick–rotated fields in the context of s and k model parametrization. A variant of the γ term
was first introduced in [80], further explored in [53, 55, 56, 76, 81, 82, 83, 84, 85, 86, 87, 88, 89].

In [49] we studied the Lorentzian bosonic IKKT model (s = 0, k = 0 and β = 1) with a final action

Sboson =
1

4
ıN

(︃
1

2
tr(F0iF0i)−

1

4
tr(FijFij)

)︃
− 1

2
ıNγ(tr(A0A0)− tr(AiAi)). (9.2.2)

Figure 9.2.5.: Complex phase diagram of the expectation values ⟨αi⟩ ∀i, N = 32 and γ = 3 for the Lorentzian IKKT matrix
model with Lorentz–invariant mass term (9.2.3) [49]. The solid line represents the Euclidean signature.

As shown in figure 9.2.5, the resulting spacetime deviates from Euclidean signature towards a closer–to–Lorentzian signature,
with near–Lorentzian signature at late times.

Figure 9.2.6.: Plots of expectation values of θ = ⟨argR(t)⟩ and |R2(t)| respectively for the Lorentzian IKKT matrix model
with Lorentz–invariant mass term (9.2.3) and γ = 3 [49]. The Euclidean signature (solid line) corresponds to
θ = π/8.

In figure 9.2.6, the deviation of the phase θ of R2 from Euclidean spacetime is evident, while a slight expansion of space at
late times is observed as well. These results indicate that the presence of the Lorentz–invariant mass term introduced in
(9.2.2) with γ > 0, affects the signature of the emergent spacetime towards a Lorentzian signature, which brings the model
closer to one generating a proper spacetime.
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9. The Lorentzian IKKT matrix model

The supersymmetric case

In [90, 91], we added the contribution of fermions in studying the Lorentzian IKKT model. The s = k = u IKKT model
parametric subspace is chosen once more, as in (9.1.3). For the sake of simplicity the tilde is again not shown. The full
supersymmetric Lorentzian IKKT matrix model action is,

Seffective = ıN exp

(︃
ıu
π

2

)︃(︃
1

2
exp(−ıuπ) tr(F0iF0i)−

1

4
tr(FijFij)

)︃
− 1

2
ıNγ exp

(︃
ıu
π

4

)︃
(exp(−ıuπ) tr(A0A0)− tr(AiAi))− log pfM, (9.2.3)

where the fermion matrixM is wick–rotated relative to its original Lorentzian definition as

A0 → ıA0 = exp

(︃
ıu
π

2

)︃
A0.

When applying the new Lorentz-invariant deformation, the sign of the γ coupling plays an important role in the sign of
ℜSeffective, which is why γ > 0 is explored in particular.8 Once again, the term is split into two phases

Sγ = Sγ–time + Sγ–space =
1

2
Nγ exp

(︃
− ı(3u+ 2)

π

4

)︃
tr(A0A0) +

1

2
Nγ exp

(︃
ı(u+ 2)

π

4

)︃
tr(AiAi).

0 ≤ u ≤ 1 is the range from the Euclidean to the Lorentzian model. The period of u with a π/4 factor is 8, and since
cosφ ≤ 0 means |φ| ≤ 2, the range of φ is chosen around 0 for each phase explored.

According to (4.4.5), ∀γ ≥ 0, ℜSγ–time ≥ 0 if

cos

(︃
|3u+ 2|π

4

)︃
≥ 0 meaning |3u+ 2| ≤ 2 or − 4

3
≤ u ≤ 0 with a period

8

3
,

and ℜSγ–space ≥ 0 if

cos

(︃
|u+ 2|π

4

)︃
≥ 0 meaning |u+ 2| ≤ 2 or − 4 ≤ u ≤ 0 with a period 8,

All inequalities overlap only for u = 0, which stands for the Lorentzian IKKT model, and for which the gamma term becomes
0 too. Therefore, on the parameter path s = k, ℜSγ ≥ 0 for γ ≤ 0, which secures the equivalence of the models. On the
other hand, γ > 0 poses an interesting domain where the equivalence is broken, as the model is ill–defined along the search
path s = k = u > 0.

The large–N limit however of the Lorentzian IKKT matrix model is expected to be nonequivalent to the Euclidean IKKT
matrix model. Furthermore, the authors in [76] have discovered classical solutions with an expanding (3+1)–dimensional
space for γ > 0, we thus focused our Monte Carlo study around that domain.

The fermionic contribution presents singularities much like its Euclidean counterpart,9, therefore a correspondent fermion
mass deformation

∆Sfermion = −Nmfermion tr(ψΓ7Γ
†
8Γ9ψ)

is necessary to shift the eigenvalue distribution away from the origin.

In [90], we applied the so–called dynamical stabilization of the complex Langevin process by interjecting ∀A bosonic matrix,

ℜηA→ (1 + η)−1(A+ ηA†).

Note that ℜ0A = A and ℜ1A = ℜA, thus ℜη for 0 ≤ η ≤ 1 interpolated between the original matrix and its hermitized
version. This method was first introduced in [92]. In the study that followed, η = .01 was used.

8γ = 0 defaults to the original Wick–rotated Lorentzian IKKT matrix model.
9See section §7.2. Complex Langevin Method (CLM) for details.
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9.2. The Euclidean–Lorentzian IKKT matrix model correspondence

Figure 9.2.7.: Complex phase diagram of the expectation values ⟨αi⟩ ∀i, N = 64 and γ values shown for the Lorentzian
IKKT matrix model with Lorentz–invariant mass term (9.2.3) [90, 91]. The solid line represents the Euclidean
signature.

The effect of the γ mass term speculated in [49] to affect the signature of spacetime is shown here to evidently shift the
signature from Euclidean to Lorentzian, with 1.8 < γ < 2.6 identified as the region of this phase transition (figure 9.2.7).

(a) Model for γ = 4.0 and mfermion = 10. (b) Model for γ = 2.6 and mfermion = 10. (c) Model for γ = 2.6 and mfermion = 5.

Figure 9.2.8.: Plots of the eigenvalues of Λ for the supersymmetric Lorentzian IKKT matrix model with Lorentz–invariant
mass term (9.2.3) [90]. The expanding eigenvalue is fitted with a exp(bt) + c.

On account of figure 9.2.8, a spontaneous symmetry breaking of SO9 is observed, however with one broken dimension being
the dominant one. The expansion of this one dimension becomes more pronounced as γ decreases and mfermion decreases.
While lower γ generally implies “less” Lorentzian spacetime signature, these runs where done within the overall Lorentzian
signature phase, not going into the phase transition range. It is speculated in [90, 91], that this spontaneous symmetry
breaking shown for finite mfermion may lead to a higher dimensionality symmetry breaking as mfermion is decreased.

[50] has a good breakdown of the current development in exploring the Lorentzian model. [71] contains an overarching review
of the history and successes of the IKKT model from its date of origin to date.
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Summary

First, in [18] a 4–dimensional matrix model and in[14, 15], the 6–dimensional and 10–dimensional IKKT matrix models were
studied via the CLM.

The CLM applied to the IKKT model presents three challenges:

• the singularities of the drift of the complex Langevin process,

• the excursions of the complex Langevin process in the imaginary direction and

• the correctness of convergence of the complex Langevin process.

Each of these challenges were addressed by:

• the deformation of the original model:

◦ finite size N approximation

◦ explicit symmetry–breaking term of order parameter ε

◦ fermion mass mfermion deformation of the Dirac operator

• gauge cooling

• the drift norm diminishing faster than exponentially [38]

The deformation of the original model is necessary for technical reasons. The finite size N makes simulations computationally
possible, so the N → ∞ extrapolation provides insight to the original model. The explicit symmetry–breaking term is
necessary to probe the SSB by explicitly breaking it, then gradually turning the order parameter ε down and observing the
surviving symmetries in the original model via appropriate observables. Finally the artificial fermion mass is eliminated last,
which in fact, acted as a decoupler of fermions, with the mfermion → ∞ model in fact being identical to the pure bosonic
model.

The excursions in the imaginary direction were solved by gauge cooling, an exploit of the underlying symmetries of the action,
to maintain the imaginary part of the complexified configurations at minimum.

Finally, correctness is established by monitoring the drift norm histogram and making sure its falloff is subexponential,
ensuring applicability of the CLM [38].

In [18], the authors successfully applied the CLM to Gaussian matrix model based on the aforementioned strategy and
methodology, in which model the SSB of SO4 → SO2 is expected to occur due to the phase of the complex fermion determinant.
The SSB did not occur with the phase quenched, which implies that the overlap problem in the reweighting–based Monte
Carlo methods is severe.

In the 4–dimensional model, the authors in [18] treated the drift singularity by shifting the Dirac operator of the original
model to a custom model with no singularities in two ways, which were gradually reduced to approximate the original model
in a series of simulations. The results were self–consistent and consistent with the corresponding GEM result [74].

In [14], we applied the CLM on the 6–dimensional IKKT model, with the same recipe. One type of fermion deformation was
applied, and all results stem from gradual extrapolations N → ∞, ε → 0 and mfermion → 0, leading to an SO6 → SO3 with
observable expectations that are consistent with the corresponding GEM result [22].

In [15], we applied the same methodology to study the true 10–dimensional IKKT model. The fermion mass deformation
was applied in the (expected) compactified directions, and the same process and order of extrapolations were applied to yield
an SO10 → SO3 SSB which is consistent with the corresponding GEM result [23] as well.
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(a) The expectation values of αi are
plotted ∀i in the complex plane
for γ = 1, 3, 5, 7. The solid
line corresponds to the Euclidean
model.

(b) θ(t) = argR(t), is plotted against the time t for
the non–Euclidean values of γ = 3, 5, 7. The
dashed line θ(t) = π/8 corresponds to the Eu-
clidean mode.

(c) The extent of space |R2(t)| is plotted against
the time t again for γ = 3, 5, 7.

Figure 1.: Observables plotted for the modified Lorentzian IKKT model (9.2.3) for various γ > 0. Quoted from [50, 71].

Figure 2.: Expansion of one spatial di-
mension exponentially with a
⟨λ1(t)⟩ ∼ a exp(b|t|) + c fit.

Next, attention was drawn to the Lorentzian IKKT matrix model which de-
spite having an ill–defined (complex) Boltzmann factor, its study is possible
with the CLM, provided it satisfies the strong conditions of correctness [38,
42].Equivalence between the original Lorentzian and Euclidean IKKT ma-
trix models is found, and a Lorentz–invariant γ > 0 mass term is introduced
to account for the generation of a Lorentzian spacetime from the dynamics
of the model. Different phases are identified across the γ spectrum:

• For finite N and as γ is reduced, we have a Euclidean signature gener-
ated spacetime [71] (figure 1a). For approximately 1.8 < γ < 2.6, we
have a phase transition from a strictly Euclidean signature spacetime
to a mixed signature spacetime that is manifestly Lorentzian at late
times, while not clearly Euclidean.

• These mixed with time spacetime signatures are more evident in the
phase θ = argR of the radial expansion of spacetime R (figure 1b),

where θ(t)
|t|→∞−−−−→ 0, while θ(0) < π/8 meaning there is a finite but

small shift towards a Euclidean signature at early times.

• The mixed signature phase presents an overall expansion tendency
|R(t)| |t|→∞−−−−→∞ of space at late times (figure 1c).

A detailed exploration of how space expands can be given by the moment of inertia Λ of the bosonic matrices encoding
spacetime. Preliminary studies show that 1 out of 9 dimensions expand exponentially as indicated by a sample run in
figure 2.
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Conclusions

The numerical simulations of the Euclidean IKKT model using the CLM yield results that are consistent with the SO10 → SO3

rotational SSB result of the GEM. While this is an interesting dynamical property, its relevance to the real world is unclear.
The initial expectation has been SO10 → SO4 corresponding to an emergent 4–dimensional spacetime. The discrepancy with
SO10 → SO3 is not only the difference in the dimension of the surviving symmetry. Both the GEM and the CLM results
yield a finite ratio of the extended dimensions versus the “compactified” ones, in contrast with the fact that the observable
4–dimensional spacetime is manifestly infinite (even if time–expanding). Both of these concerns eventually motivate the
study of the Lorentzian IKKT model using the CLM, where we expect to see real time emerging and 3–dimensional space
expanding.

The Lorentzian IKKT model on the other hand also has a sign problem, it stems however from a different source. As the
Boltzmann factor is now exp ıS, the phase stems from the bosonic part of the action as exp ıSboson, and the problem is thus
manifest in both the pure bosonic Lorentzian IKKT model and the full model. The fermionic part Sfermion is still responsible
for the drift singularities, thus similar to the Euclidean version fermion deformations are necessary.

The Lorentzian version however has one more issue: its action is unbounded from below. Without any cutoffs however, the
Lorentzian model was found to be equivalent to the Euclidean model, and that the emergent spacetime obtained from the
Lorentzian model should be interpreted as Euclidean.

To overcome this situation, we proposed to add a Lorentz–invariant mass term γ. Our preliminary results for the bosonic
model are very promising. When the mass parameter γ is large enough, the path integral is dominated by one of the classical
solutions, having Lorentzian signature and expanding behavior. As γ is decreased, the extent of the emergent time increases
and the emergent space is expanding more at late times. The expansion at late times is consistent with an exponential
behavior. The signature of spacetime is Lorentzian at late times, while it seems to change to Euclidean at early times. We
speculate that an expanding spacetime with Lorentzian signature emerges at late times in the γ → +0 limit after taking the
large–N limit.

When space has an expanding behavior, we observe a clear block–diagonal structure, which is important in extracting the
time–evolution from the matrix configurations that we obtain from the model. We also observe that space appears to be
continuous instead of having the Pauli–matrix structure that was observed previously by using another approximation to
avoid the sign problem.

In the bosonic model, we observed that only 1 out of 9 spatial directions expands. This may be understood from the action
of the original type IIB matrix model. Since the spatial directions expand exponentially, the trT×Σ [AI |AJ ][AI |AJ ] term
becomes dominant. The fluctuation of this term can be made small by having only one expanding direction.

As a future prospect, it is important to study the impact of the fermionic matrices on the dynamical generation of spacetime.
We expect supersymmetry to play an essential role in realizing the expansion of 3 spatial directions. It is known that pfM
vanishes if we set Aµ = 0 ∀µ apart for two of them [13,15], which strongly suppresses the (1 + 1)–dimensional spacetime and
possibly also (2 + 1)–dimensional spacetime considering the exponential expansion of space. It remains to be seen whether
we can reduce the fermionic mass deformation mfermion to the extent that enables us to see the effects of supersymmetry
needed to make the emergent spacetime (3 + 1)–dimensional.
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